A Matlab toolbox for tensors in hierarchical Tucker format

Christine Tobler and Daniel Kressner

Seminar for applied mathematics
ETH Zürich
ctobler@math.ethz.ch
ProDoc Workshop Disentis, 19.08.2011

Motivation

Low-rank matrix:

- Reduced storage cost: $O\left(n_{1} r+n_{2} r\right)$ instead of $O\left(n_{1} n_{2}\right)$
- Basic operations (addition, multiplication by a matrix) possible
- Best lower-rank approximation by truncated SVD

We define a tensor as an array $\mathcal{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$
Goal:

- Concept of low-rank tensor, similar to that of low-rank matrix
- Storage cost linearly dependent on d

Contents

CP and Tucker formats
Hierarchical Tucker format
MATLAB htucker toolbox
Basic operations

- Matrix \times tensor, addition
- Orthogonalization
- Inner product

Advanced operations

- Truncation of explicitly given tensor
- Truncation of \mathcal{H}-Tucker tensor

Conclusions

CP and Tucker formats

CP format

$$
\operatorname{vec}(\mathcal{X})=\sum_{j=1}^{R} u_{j}^{(d)} \otimes \cdots \otimes u_{j}^{(1)}, \quad u_{j}^{(\mu)} \in \mathbb{R}^{n_{\mu}} .
$$

Pro and Contra

+ Storage requirements linear in d: $d n R$
- Approximation in CP format cumbersome

Tucker format

$$
\operatorname{vec}(\mathcal{X})=\sum_{j_{1}=1}^{r_{1}} \cdots \sum_{j_{d}=1}^{r_{d}} \mathcal{C}_{j_{1}, \ldots, j_{d}} u_{j_{d}}^{(d)} \otimes \cdots \otimes u_{j_{1}}^{(1)}=\left(U_{d} \otimes \cdots \otimes U_{1}\right) \operatorname{vec}(\mathcal{C})
$$

with $\mathcal{C} \in \mathbb{R}^{r_{1} \times \cdots \times r_{d}}, U_{\mu}=\left[u_{1}^{(\mu)}, \ldots, u_{r_{\mu}}^{(\mu)}\right] \in \mathbb{R}^{n_{\mu} \times r_{\mu}}$.

Pro and Contra

+ Efficient quasi-best approximation in Tucker format (HOSVD)
- Storage requirements exponential in $\mathrm{d}: d n r+r^{d}$

Hierarchical Tucker format

- L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl., 31(4):2029-2054, 2010.
- W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier Anal. Appl., 15(5):706-722, 2009.

Matricization

1-mode matricization:

μ-mode matricization:

$$
X^{(\mu)} \in \mathbb{R}^{n_{\mu} \times\left(n_{1} \cdots n_{\mu-1} n_{\mu+1} \cdots n_{d}\right)}, \quad \mu=1, \ldots, d
$$

General matricization for mode decomposition $\{1, \ldots, d\}=t \cup s$:
$X^{(t)} \in \mathbb{R}^{\left(n_{t_{1}} \cdots n_{t_{k}}\right) \times\left(n_{s_{1}} \cdots n_{s_{d-k}}\right)} \quad$ with $\quad\left(X^{(t)}\right)_{\left(i_{t_{1}}, \ldots, i_{k_{k}}\right),\left(i_{s_{1}}, \ldots, i_{s_{d-k}}\right)}:=\mathcal{X}_{i_{1}, \ldots, i_{d}}$.

Hierarchical construction

Definition of \mathcal{H}-Tucker rank- $\left(r_{t}\right)_{t \in \mathcal{T}}$ tensor:

$$
\mathcal{H}-\operatorname{Tucker}\left(r_{t}\right)_{t \in \mathcal{T}}=\left\{\mathcal{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}: \operatorname{rank}\left(X^{(t)}\right) \leq r_{t} \quad \forall t \in \mathcal{T}\right\}
$$

Singular value decomposition: $X^{(t)}=U_{t} \Sigma_{t} U_{s}^{T}$.
Column spaces are nested \rightsquigarrow

$$
\begin{aligned}
t=t_{1} \dot{U} t_{2} & \Rightarrow \operatorname{span}\left(U_{t}\right) \subset \operatorname{span}\left(U_{t_{2}} \otimes U_{t_{1}}\right) \\
& \Rightarrow \exists B_{t}: U_{t}=\left(U_{t_{2}} \otimes U_{t_{1}}\right) B_{t} .
\end{aligned}
$$

Size of U_{t} :

$$
U_{t} \in \mathbb{R}^{n_{t_{1}} \cdots n_{t_{k}} \times r_{t}} \quad \text { with } \quad r_{t}=\operatorname{rank}\left(X^{(t)}\right) .
$$

Size of B_{t} :

$$
B_{t} \in \mathbb{R}^{r_{1} r_{2}} r_{t_{2}} \times r_{t} \quad \text { with } \quad r_{t}=\operatorname{rank}\left(X^{(t)}\right)
$$

Hierarchical construction

Singular value decomposition: $X^{(t)}=U_{t} \Sigma_{t} U_{s}^{T}$.

$$
\begin{aligned}
t=t_{1} \dot{\cup} t_{2} & \Rightarrow \operatorname{span}\left(U_{t}\right) \subset \operatorname{span}\left(U_{t_{2}} \otimes U_{t_{1}}\right) \\
& \Rightarrow \exists B_{t}: U_{t}=\left(U_{t_{2}} \otimes U_{t_{1}}\right) B_{t} .
\end{aligned}
$$

For $d=4$:

$$
\begin{aligned}
U_{12} & =\left(U_{2} \otimes U_{1}\right) B_{12} \\
U_{34} & =\left(U_{4} \otimes U_{3}\right) B_{34} \\
\operatorname{vec}(\mathcal{X})=X^{(1234)} & =\left(U_{34} \otimes U_{12}\right) B_{1234} \\
\Rightarrow \operatorname{vec}(\mathcal{X}) & =\left(U_{4} \otimes U_{3} \otimes U_{2} \otimes U_{1}\right)\left(B_{34} \otimes B_{12}\right) B_{1234} .
\end{aligned}
$$

Dimension tree

Tree structure for $d=4$:

Reshape:

$$
\begin{aligned}
B_{12} \in \mathbb{R}^{r_{1} r_{2} \times r_{12}} & \Rightarrow \mathcal{B}_{12} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{12}} \\
B_{34} \in \mathbb{R}^{r_{3} r_{4} \times r_{34}} & \Rightarrow \mathcal{B}_{34} \in \mathbb{R}^{r_{3} \times r_{4} \times r_{34}} \\
B_{1234} & \in \mathbb{R}^{r_{12} r_{34} \times 1}
\end{aligned} \Rightarrow \mathcal{B}_{1234} \in \mathbb{R}^{r_{12} \times r_{34}} .
$$

Dimension tree

Storage requirements for general d :

$$
\mathcal{O}(d n r)+\mathcal{O}\left(d r^{3}\right)
$$

where $r=\max \left\{r_{t}\right\}, n=\max \left\{n_{\mu}\right\}$.

Tensor network notation

Tensor network: Collection of tensors connected by tensor contractions.

Examples:

MATLAB htucker toolbox

MatLAB htucker toolbox

- htucker provides MATLAB class for storing and manipulating tensor in low-rank format.
- Several operations overloaded (+ - . * norm ...)
- Set of frequently used utilities.
- Main goal: Painless experimentation with algorithms.

Existing MatLAB Toolboxes

- Matlab Tensor Toolbox by T. Kolda and B. Bader csmr.ca.sandia.gov/~tgkolda/TensorToolbox
- TT Toolbox by I. Oseledets
spring.inm.ras.ru/osel/?p=31

Basic functionality for MATLAB class htensor

$x=$ htenones $\left(\left[\begin{array}{llll}4 & 5 & 6 & 7\end{array}\right]\right)$ constructs htensor of size $4 \times 5 \times 6 \times 7$, with all entries one.
$x=h t e n r a n d n\left(\left[\begin{array}{llll}4 & 5 & 6 & 7\end{array}\right]\right)$ constructs htensor of size $4 \times 5 \times 6 \times 7$, with random ranks and random entries.
$\mathrm{x}(1,3,4,2)$ returns entry of \mathcal{X}.
$\mathrm{x}(1,3,:,:)$ returns slice of \mathcal{X} as an htensor.
full (x) returns full tensor represented by \mathcal{X}. (use with care)
spy (x) displays spy plots of U_{t}, B_{t}, on the dimension tree.
disp_tree (x) returns tree structure/ranks:

```
ans is an htensor of size 4 x 5 x 6 x 7
```


Singular value tree

plot_sv(x) plots singular values of corresponding matricizations in the dimension tree of a tensor \mathcal{X}.

Example: Singular value tree of an order 5 tensor.

Basic operations

－Matrix \times tensor
－Addition
－Inner product

Matrix \times tensor

Application of matrix $A \in \mathbb{R}^{m \times n_{\mu}}$ to mode μ of $\mathcal{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$:

$$
\mathcal{Y}=A \circ_{\mu} \mathcal{X} \quad \Leftrightarrow \quad Y^{(\mu)}=A X^{(\mu)}
$$

Nearly trivial if \mathcal{X} is in \mathcal{H}-Tucker format:

$$
\begin{aligned}
A \circ_{\mu} \mathcal{X} & =A \circ_{\mu}\left(\left(U_{1}, \ldots, U_{d}\right) \circ \mathcal{C}\right) \\
& =\left(U_{1}, \ldots, U_{\mu-1}, A U_{\mu}, U_{\mu+1}, \ldots, U_{d}\right) \circ \mathcal{C}
\end{aligned}
$$

- Almost no operations required.
- Ranks stay the same.
- Orthogonality destroyed.
$\operatorname{ttm}(x, A, 2)$ applies matrix A to htensor \mathcal{X} in mode 2.
$y=\operatorname{ttm}(x,\{A, B, C\},[2,3,4])$
$y=\operatorname{ttm}(x, @(x)(f f t(x)), 2)$ applies FFT in mode 2.

Addition of low-rank matrices

Addition of two matrices in low-rank format:

$$
\begin{gathered}
A=U_{1} \Sigma_{A} U_{2}^{T}, \quad B=V_{1} \Sigma_{B} V_{2}^{T} \\
A+B=\left[\begin{array}{ll}
U_{1} & V_{1}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{A} & 0 \\
0 & \Sigma_{B}
\end{array}\right]\left[\begin{array}{ll}
U_{2} & V_{2}
\end{array}\right]^{T}
\end{gathered}
$$

- No operations required.
- Rank increases.
- Orthogonality destroyed.

Addition of low-rank tensors

Addition of four tensors $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \mathcal{X}_{4}$ in \mathcal{H}-Tucker format:

$$
\mathcal{X}_{1}+\mathcal{X}_{2}+\mathcal{X}_{3}+\mathcal{X}_{4} .
$$

Proceed as in matrix case by embedding factors in larger matrices.

- No operations required.
- \mathcal{H}-Tucker rank increases.
- Orthogonality destroyed.

Command in htucker: $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4$

Orthogonalization

Any tensor \mathcal{X} in \mathcal{H}-Tucker format can be orthogonalized in the sense that all factors in the dimension tree, except for the root node, contain orthonormal columns, $U_{t}^{T} U_{t}=I$.
Example: $\operatorname{vec}(\mathcal{X})=\left(U_{4} \otimes U_{3} \otimes U_{2} \otimes U_{1}\right)\left(B_{34} \otimes B_{12}\right) B_{1234}$.
Step 1: QR decompositions $U_{t}=Q_{t} R_{t} \rightsquigarrow$

$$
\operatorname{vec}(\mathcal{X})=\left(Q_{4} \otimes Q_{3} \otimes Q_{2} \otimes Q_{1}\right)\left(\widetilde{B}_{34} \otimes \widetilde{B}_{12}\right) B_{1234}
$$

with $\widetilde{B}_{34}:=\left(R_{4} \otimes R_{3}\right) B_{34}, \widetilde{B}_{12}:=\left(R_{2} \otimes R_{1}\right) B_{12}$.
Step 2: QR decompositions $\widetilde{B}_{34}=Q_{34} R_{34}, \widetilde{B}_{12}=Q_{12} R_{12} \rightsquigarrow$

$$
\operatorname{vec}(\mathcal{X})=\left(Q_{4} \otimes Q_{3} \otimes Q_{2} \otimes Q_{1}\right)\left(Q_{34} \otimes Q_{12}\right) \widetilde{B}_{1234}
$$

with $\widetilde{B}_{1234}:=\left(R_{34} \otimes R_{12}\right) B_{1234}$.
Compt. requirements for general $d: \mathcal{O}\left(d n r^{2}\right)+\mathcal{O}\left(d r^{4}\right)$.
Command in htucker: $\mathrm{x}=$ orthog (x)

Inner product

Inner product of two tensors $\mathcal{X}, \mathcal{Y} \in \mathbb{R}^{n_{1} \times \cdots n_{d}}$:

$$
\langle\mathcal{X}, \mathcal{Y}\rangle=\langle\operatorname{vec}(\mathcal{X}), \operatorname{vec}(\mathcal{Y})\rangle=\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}} x_{i_{1}, \ldots, i_{d}} y_{i_{1}, \ldots, i_{d}}
$$

Can be performed efficiently in \mathcal{H}-Tucker, provided that \mathcal{X}, \mathcal{Y} have compatible dimension trees.

- htucker command: innerprod (x,y)
- Overall cost: $\mathcal{O}\left(d n r^{2}\right)+\mathcal{O}\left(d r^{4}\right)$.

Computation of inner product

$$
\langle\mathcal{X}, \mathcal{Y}\rangle=\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}} x_{i_{i}, \ldots, i_{d}} y_{i}, \ldots, i_{d} .
$$

Computation of inner product

$$
\langle\mathcal{X}, \mathcal{Y}\rangle=\sum_{i_{i}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}} x_{i}, \ldots, i_{d} y_{i}, \ldots, i_{d} .
$$

Computation of inner product

Advanced operations

- Truncation of explicitly given tensor
- Truncation of \mathcal{H}-Tucker tensor

Truncation of explicit tensor

Let $\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ be explicitly given.

- For each tree node t, let W_{t} contain the r_{t} dominant left singular vectors of $X^{(t)}$ and define projection

$$
\pi_{t} \mathcal{X}=W_{t} W_{t}^{H} \circ_{t} \mathcal{X} \quad \Leftrightarrow \quad \pi_{t} X^{(t)}=W_{t} W_{t}^{H} X^{(t)}
$$

- Truncated tensor:

$$
\tilde{\mathcal{X}}:=\left(\prod_{t \in \mathcal{T}_{L}} \pi_{t}\right) \cdots\left(\prod_{t \in \mathcal{T}_{1}} \pi_{t}\right) \mathcal{X}
$$

where \mathcal{T}_{ℓ} contains all nodes on level ℓ.

- [Grasedyck'2010]: $\|\mathcal{X}-\tilde{\mathcal{X}}\| \leq \sqrt{2 d-3}\left\|\mathcal{X}-\mathcal{X}_{\text {best }}\right\|$.

Truncation of explicit tensor

Example:

$$
\begin{aligned}
\operatorname{vec} \tilde{\mathcal{X}}= & \left(W_{4} W_{4}^{H} \otimes W_{3} W_{3}^{H} \otimes W_{2} W_{2}^{H} \otimes W_{1} W_{1}^{H}\right)\left(W_{34} W_{34}^{H} \otimes W_{12} W_{12}^{H}\right) \operatorname{vec} \mathcal{X} \\
= & \left(W_{4} \otimes W_{3} \otimes W_{2} \otimes W_{1}\right) \cdots \\
& (\underbrace{\left[W_{4}^{H} \otimes W_{3}^{H}\right] W_{34}}_{: B_{34}} \otimes \underbrace{\left[W_{2}^{H} \otimes W_{1}^{H}\right] W_{12}}_{=: B_{12}}) \underbrace{\left(\left[W_{34}^{H} \otimes W_{12}^{H}\right] \operatorname{vec} \mathcal{X}\right)}_{=: B_{1234}} .
\end{aligned}
$$

> opts.max_rank $=10$ maximal rank at truncation.
> opts.rel_eps $=1 e-6$ maximal relative truncation error.
> opts.abs_eps = 1e-6 maximal absolute truncation error. Condition max_rank takes precedence over rel_eps and abs_eps.
> $x t=$ htensor.truncate_rtl (x, opts) returns truncated tensor $\tilde{\mathcal{X}}$ of a multidimensional array.

Remark: There is also a significantly faster htensor.truncate_ltr (proceeds successively from leafs to roots), for which the same error bound holds [Tobler'10].

Truncation of \mathcal{H}-Tucker tensor

Let $\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ be in \mathcal{H}-Tucker format and orthogonalized.

- Compute left singular vectors of $X^{(t)}=U_{t} V_{t}^{T}$ from eigenvectors of

$$
X^{(t)}\left(X^{(t)}\right)^{T}=U_{t} \underbrace{V_{t}^{T} V_{t}}_{=G_{t}} U_{t}^{T},
$$

with reduced Gramian G_{t} (calculated recursively for all t).
If S_{t} contains r_{t} dominant eigenvectors of $G_{t} \rightsquigarrow W_{t}=U_{t} S_{t}$.

- Remember: $\tilde{B}_{t}=\left[W_{t_{2}}^{H} \otimes W_{t_{1}}^{H}\right] W_{t}$

$$
\begin{aligned}
\tilde{B}_{t} & =\left[S_{t_{2}}^{H} U_{t_{2}}^{H} \otimes S_{t_{1}}^{H} U_{t_{1}}^{H}\right] U_{t} S_{t} \\
& =\left[S_{t_{2}}^{H} U_{t_{2}}^{H} \otimes S_{t_{1}}^{H} U_{t_{1}}^{H}\right]\left(U_{t_{2}} \otimes U_{t_{1}}\right) B_{t} S_{t}=\left[S_{t_{2}}^{H} \otimes S_{t_{1}}^{H}\right] B_{t} S_{t} .
\end{aligned}
$$

- In htucker: truncate (x , opts). Complexity $\mathcal{O}\left(d n r^{2}+d r^{4}\right)$.

Conclusions

htucker:

- Convenient MATLAB implementation of hierarchical Tucker format.
- Plenty of utilities and examples hopefully get you started.
i.e., there is no documentation yet.
- Current version 0.8. (We are open to suggestions!)

Coming soon:

- Application to high-dimensional parabolic PDEs (R. Andreev)

Conclusions

htucker:

- Convenient MATLAB implementation of hierarchical Tucker format.
- Plenty of utilities and examples hopefully get you started.
i.e., there is no documentation yet.
- Current version 0.8. (We are open to suggestions!)

Coming soon:

- Application to high-dimensional parabolic PDEs (R. Andreev)

Thank you for your attention!

