Advanced Simulation Methods for Charge Transport in OLEDs

Evelyne Knapp, B. Ruhstaller

Overview

1. Introduction
2. Physical Models
3. Numerical Methods
4. Outlook

www.icp.zhaw.ch
ICP Team

- Interdisciplinary team of 8 physicists, 4 mathematicians und 3 engineers

1996 Section NMSA
2002 Foundation CCP
2007 Foundation ICP

Spin-offs:
Fluxim AG, www.fluxim.com

Institute of Computational Physics
Research Activities

• The main focus is applied research and development in the following areas:
 › Micro systems, sensors, actors
 › Fuel cells
 › Organic optoelectronic and photovoltaics
 › Simulation software
Advanced Experimentally Validated OLED model

Philips Research Eindhoven
Project Coordinator: Reinder Coehoorn

Eindhoven University of Technology

University of Groningen

Institute of Computational Physics

Philips Research Aachen

Zürich University of Applied Sciences
Fluxim

Technical University Dresden

Sim4Tec

University of Cambridge
Principle of OLED Operation

Institute of Computational Physics

Real stack consists of up to 12 layers!

Fundamental Processes:

1. Charge Injection
2. Charge Carrier Transport
3. Exciton Formation
4. Radiative Decay
5. Light Extraction
• Novel physical models require better numerical methods

• Transient simulations and IV curves need multiple simulations

→ Efficient simulations are crucial

Experimental data from CSEM, simulation by ICP
Overview-Task list

✓ Modeling of charge carrier transport
 › Gummel solver
 › Newton solver

✓ Bipolar

✓ Injection

✓ Organic material properties
 › Disorder (Gaussian DOS)
 › Mobility
 › Generalized Einstein relation

✓ Traps (Exponential DOS)

✓ Multilayer OLEDs
 • Exciton dynamics
 • Parameter extraction
 • Coupling to optical model
 • Impedance simulations

Institute of Computational Physics
Gaussian Disorder

- Small molecules and polymer LEDs/solar cells
- Charge transport by hopping between uncorrelated sites
- Width of DOS-disorder parameter σ (50-150 meV)

\[
DOS(\epsilon) = \frac{N_t}{\sqrt{2\pi\sigma}} \exp \left[- \left(\frac{\epsilon - \epsilon_0}{\sqrt{2\sigma}} \right)^2 \right]
\]
Poisson equation: \[\epsilon \Delta \psi = q(n - p) \]

Continuity equation: \[\nabla \cdot J_p + q \frac{\partial p}{\partial t} = -qR(p, n) \]

Drift-Diffusion: \[J_p = -q \mu_p p \nabla \psi - q D_p \nabla p \]

similar for electrons
Governing Equations in OLEDs

Poisson equation: \(\epsilon \Delta \psi = q(n - p) \)

Continuity equation: \(\nabla \cdot J_p + q \frac{\partial p}{\partial t} = -qR(p, n) \)

Drift-Diffusion: \(J_p = -q\mu_p p \nabla \psi - qD_p \nabla p \)

Similar for electrons

mobility & diffusion coefficient are affected by the Gaussian DOS!
Generalized Einstein Relation

\[p = \int_{-\infty}^{\infty} DOS(E) f(E) dE \]

\[\frac{D}{\mu} = \frac{kT}{q} \]

Institute of Computational Physics
Generalized Einstein Relation

\[p = \int_{-\infty}^{\infty} \text{DOS}(E) f(E) dE \]

- **Einstein relation**
 \[\frac{D}{\mu} = \frac{kT}{q} \]
 \[\frac{D}{\mu} = \frac{p}{q \frac{\partial p}{\partial E_F}} \]

- **DOS**
 \[\propto \sqrt{E} \]

- **Statistics**
 - Boltzmann
 - Fermi-Dirac

- **Ordered material**
- **Disordered material**

Institute of Computational Physics
Generalized Einstein Relation

The Generalized Einstein Relation is given by:

$$ p = \int_{-\infty}^{\infty} DOS(E) f(E) dE $$

DOS and Statistics

<table>
<thead>
<tr>
<th>ordered material</th>
<th>disordered material</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS</td>
<td>$\propto \sqrt{E}$</td>
</tr>
<tr>
<td>Statistics</td>
<td>Boltzmann</td>
</tr>
<tr>
<td>Einstein relation</td>
<td>Fermi-Dirac</td>
</tr>
</tbody>
</table>

Einstein Relation

For ordered material:

$$ \frac{D}{\mu} = \frac{kT}{q} $$

For disordered material:

$$ \frac{D}{\mu} = \frac{p}{q} \frac{\partial p}{\partial E_F} $$
Extended Gaussian Disorder Model (EGDM)

\[D_p = \frac{k_B T}{q} \mu_0(T, p, F) g_3(p, T) \]

\[\mu_p(T, p, F) = \mu_0(T) g_1(p, T) g_2(F, T) \]

Nonlinear equations for mobility and diffusion coefficient

Mobility depends on temperature, field and density

Assumption of ohmic contact: Dirichlet boundary conditions

\[n_1 = 0.5N_t \]
\[n_2 = 0.5N_t \]
\[16V \]
Assumption of ohmic contact: Dirichlet boundary conditions

\[n_1 = 0.5N_t \]
\[n_2 = 0.5N_t \]

16V

Institute of Computational Physics
Assumption of ohmic contact: Dirichlet boundary conditions

\[n_1 = 0.5N_t \]
\[n_2 = 0.5N_t \]

16V
Assumption of ohmic contact:
Dirichlet boundary conditions

\[n_1 = 0.5N_t \]
\[n_2 = 0.5N_t \]

16V
EGDM on single layer OLED

IV Curve (hole-only device)

- Diffusion effects
- Field- and density-dependent

IV Curve (hole-only device with 1eV built-in potential)

- Effects of different disorder parameters

In good agreement with:
S. L. M. van Mensfoort, R. Coehoorn, Phys. Rev. B 78, 085207 (2008, Fig 9)

Institute of Computational Physics
Recombination Profiles

- Bipolar simulation with constant mobility and EGDM for \(\hat{\sigma} = 3 \) and \(\hat{\sigma} = 6 \)
- Effects of disorder clearly visible
Thermionic Injection

Contact Region

metal

organic

LUMO

Φ_e

Fermi energy
workfunction

Institute of Computational Physics
Thermionic Injection

\[\Phi_{image} = \frac{e^2}{16\pi\varepsilon\varepsilon_0} \frac{1}{x} \]

Contact Region

Institute of Computational Physics
Thermionic Injection

$\Phi_{image} = \frac{e^2}{16\pi \varepsilon \varepsilon_0} \frac{1}{x}$

Contact Region

Institute of Computational Physics
Thermionic Injection

\[\Phi_e - eE x - \frac{e^2}{16\pi\varepsilon\varepsilon_0 x} \]

Institute of Computational Physics
Density at contact depends on position of Gaussian DOS

Dependent boundary conditions

Institute of Computational Physics
Effects of Injection

Dependence of the current density on the injection barrier at 2V

- No effect if injection barrier < 0.5 eV
- Higher currents with image potential
- Agrees with Monte Carlo results

In good agreement with:
Trap Effects in OLEDs

- localized sites with higher electron affinity
 - impurities, chemical defects
- Model
 - trap distribution: Exponential, Gaussian
 - discrete levels: shallow, deep

\[\epsilon \Delta \psi = q(n - p + n_t - p_t) \]
\[\nabla \cdot J_p + q \frac{\partial p}{\partial t} = -qR(p, n) \]
\[J_p = -q\mu_p p \nabla \psi - qD_p \nabla p \]
Trap IV Curves

 Trap density influences current density

Analytical solution for Gaussian DOS:
Multi-layer Devices

- Stack of organic material to optimize recombination profiles and light emission
Spatial Discretization

- 1-dimensional finite volume method
 - Domain divided into n grid points

![Diagram](Anode to Cathode)

- Reformulation of problem

\[
F_1(\psi, p, n) = \epsilon \Delta \psi - q(n - p) \stackrel{!}{=} 0
\]

\[
F_2(\psi, p, n) = \nabla \cdot (-q\mu_p p \nabla \psi - qD_p \nabla p) + q \frac{\partial p}{\partial t} + qR \stackrel{!}{=} 0
\]

\[
F_3(\psi, p, n) = \nabla \cdot (-q\mu_n n \nabla \psi + qD_n \nabla n) - q \frac{\partial n}{\partial t} - qR \stackrel{!}{=} 0
\]

- Integration over each box
Neglecting recombination and assuming a constant current density through the device:

\[q\mu_n(U_t \frac{\partial n}{\partial x} - n \frac{\partial \psi}{\partial x}) = c \]

Boundary values: \(n(x_{i-1}) = n_{i-1} \) and \(n(x_i) = n_i \).

Analytic solution:

\[n(x) = n_{i-1}(1 - g(x)) + n_i g(x) \]

with

\[g(x) = \frac{1 - \exp\left(\frac{(\psi_i - \psi_{i-1}) x - x_{i-1}}{U_t}\right)}{1 - \exp\left(\frac{\psi_i - \psi_{i-1}}{U_t}\right)} \]

Analytic solution serves as Ansatz function:

Scharfetter-Gummel discretization
Spatial Discretization

- Exponential fitting for drift-diffusion (F2 and F3)
 - Scharfetter-Gummel discretization with generalized Einstein relation and density- and fielddependent mobility

- System of (3 x n) strongly coupled equations

\[
\vec{F}(\vec{x}) = \begin{pmatrix}
\vec{F}_1(\vec{x}) \\
\vec{F}_2(\vec{x}) \\
\vec{F}_3(\vec{x})
\end{pmatrix}
\]

\[
\vec{x} = \begin{pmatrix}
\psi_1 \\
\vdots \\
\psi_n \\
n_1 \\
\vdots \\
n_n \\
p_1 \\
\vdots \\
p_n
\end{pmatrix}
\]

- Dirichlet boundary conditions:
 - Values for potential and carriers given at electrodes
Problem Formulation

• Variables sets
 › carrier concentrations \((\psi, p, n)\)
 › quasi-Fermi level \((\psi, \phi_p, \phi_n)\)
 • Assumption: Boltzmann statistics

\[
p = n_{int, eff} \exp \left(\frac{q(\phi_p - \psi)}{kT} \right)
\]
\[
n = n_{int, eff} \exp \left(\frac{q(\psi - \phi_n)}{kT} \right)
\]

› Slotboom \((\psi, \Phi_p, \Phi_n)\)

\[
\Phi_p = \exp \left(\frac{q\phi_p}{kT} \right) \\
p = p_i \Phi_p \exp \left(-\frac{q\psi}{kT} \right)
\]
\[
\Phi_n = \exp \left(-\frac{q\phi_n}{kT} \right) \\
n = n_i \Phi_n \exp \left(\frac{q\psi}{kT} \right)
\]
Discretized Equations

- **De-coupled solving**
 - Gummel algorithm

- **Coupled solving**
 - Newton algorithm

Find x^* so that $F(x^*) = 0$.

$$F(x) = F(x^*) + J(x^*)(x - x^*)$$

$$J(x) = \begin{bmatrix}
\frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_1(x)}{\partial x_N} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_N(x)}{\partial x_1} & \cdots & \frac{\partial F_N(x)}{\partial x_N}
\end{bmatrix}$$

$$\Rightarrow x^{k+1} = x^k - J(x^k)^{-1} F(x^k)$$
Algorithms

- Gummel
 - steady-state
 - transient
- Newton
 - steady-state
 - transient
- Initial guess
 - no bias applied, Boltzmann approximation
- Gummel steady-state
 - Damping
- Newton
 - Damping
 - Homotopy
L2-Norm: \[|F| = \sqrt{\sum_{k=1}^{n} |F_k|^2} \]
Convergence - Steady State

L2-Norm: \[|F| = \sqrt{\sum_{k=1}^{n} |F_k|^2} \]

- Convergence for Gummel and Newton algorithm
- Fewer iterations needed for Newton algorithm

Institute of Computational Physics
Transient Simulations

- Implicit Euler time step
Outlook

✓ Modeling of charge carrier transport
 › Gummel solver
 › Newton solver
✓ Bipolar
✓ Injection
✓ Organic material properties
 › Disorder (Gaussian DOS)
 › Mobility
 › Generalized Einstein relation
✓ Traps (Exponential DOS)
✓ Multilayer OLEDs
 • exciton dynamics
 • Parameter extraction
 • Coupling to optical model
 • Impedance simulations

Institute of Computational Physics
Exciton Dynamics

- Poisson Equation
 \[\frac{\partial E(x)}{\partial x} = \frac{e}{\varepsilon \varepsilon_0} \left(p(x) - n(x) \right) \]

- Charge Current
 \[J_n(x) = e \mu_n(x, E) \cdot n(x) \cdot E(x) + D(\mu) \cdot \frac{\partial n(x)}{\partial x} \]

- Charge Continuity
 \[\frac{\partial n(x)}{\partial t} = \frac{1}{e} \frac{\partial J_n(x)}{\partial x} - r(x) \cdot p(x) \cdot n(x) + G_{opt} n(x) \]

- Exciton Current
 \[J_s(x) = D_s \cdot \frac{\partial S(x)}{\partial x} \]

- Exciton Continuity
 \[\frac{dS_i}{dt} = G_i R + \nabla \cdot \vec{J}_{si} - \left(k_{rad_i} + k_{nonrad_i} \right) \cdot S_i - k_{annihilation_i} \cdot S_i^2 + \sum_{j=1}^{n_{exc}} \left(k_{ji} \cdot S_j - k_{ij} \cdot S_i \right) + G_{opt_{exc}} S_i \]

Electro-optical Coupling Terms

Opto-electronic Coupling Terms

Institute of Computational Physics
Outlook

✓ Modeling of charge carrier transport (1st generation)
 › Gummel
 › Newton
✓ Bipolar (1st generation)
✓ Injection (2nd generation)
✓ Organic material properties
 › Disorder (2nd generation)
 › Mobility (2nd generation)
 › Generalized Einstein relation (2nd generation)
✓ Traps (2nd generation)
✓ Multilayer OLEDs (1st generation)
 • Exciton dynamics (1st generation)
 • Parameter extraction
 • Optical simulations
 • Impedance simulations

Institute of Computational Physics
Acknowledgement

• We acknowledge the financial support of RF7

• Thanks for your attention!