Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

FS 23
Title (Credits)Time & PlaceInstructor
Advanced Algebraic Topology (DP) (1)We, 13.00-14.45
Y27H25
Martel-Tordjman
Advanced Graph Algorithms and Optimization (U) ()Mo, 11.15-12.00
ETH ML F 39
Fr, 14.15-16.00
ETH LFW B1
Kyng
Advanced Graph Algorithms and Optimization (V) (3)Mo, 10.15-11.00
ETH ML F 39
Tu, 16.15-18.00
ETH CAB G 51
Kyng
Advances in Optimal Transport and Stochastic (V) (1)Mo, 14.15-16.00
ETH HG D 1.1
Acciaio
Algebraic Geometry II (DP) (2)Th, 10.15-12.00
Y27H46
Fr, 10.15-12.00
Y27H12
Kresch
Algebraic Topology II (G) (3)We, 10.15-12.00
ETH ML E 12
Fr, 14.15-16.00
ETH HG G 3
Kalisnik Hintz
A^1-Algebraic topology over a field, part 2 (DP) (3)Mo, 10.15-12.00
Y27H12
Tu, 10.15-12.00
Y27H12
Ayoub
Brownian Motion and Stochastic Calculus (U) ()Fr, 08.15-09.00
ETH HG G 26.5
Fr, 09.15-10.00
ETH HG G 26.5
Fr, 12.15-13.00
ETH HG G 26.3
Possamai
Brownian Motion and Stochastic Calculus (V) (2)Tu, 08.15-10.00
ETH HG E 3
Th, 08.15-10.00
ETH HG E 3
Possamai
Characteristic Classes (DP) (2)Mo, 08.00-09.45
Y27H12
Mathieu
Cohomological Methods in Group Theory (V) (2)Th, 10.15-12.00
ETH HG G 43
Nucinkis
Computational Quantum Physics (U) ()Tu, 13.45-15.30
ETH HCI J 7
Fischer
Computational Quantum Physics (V) (2)Tu, 09.45-11.30

Fischer
Convex Optimisation (G) (2)We, 16.15-18.00
ETH HG D 7.1
Th, 16.15-17.00
ETH ETF C 1
Fr, 08.15-09.00
ETH ML F38
Fr, 12.15-13.00
ETH CAB G 11
Kurpisz
Data Analytics for Non-Life Insurance Pricing (V) (1)Tu, 16.15-18.00
ETH HG E 1.2
Wüthrich
Deep Learning in Scientific Computing (U) ()Tu, 13.15-14.00
ETH HG E 5
Mishra
Deep Learning in Scientific Computing (V) (1)Fr, 12.15-14.00
ETH HG D 1.1
Mishra
Derived Algebraic Geometry (V) (2)Tu, 16.15-18.00
ETH HG E 1.1
Bojko
Differential Geometry II (U) ()Fr, 09.00-10.00
ETH HG E 1.1
Fr, 10.00-11.00
ETH HG E 1.1
Serra
Differential Geometry II (V) (3)Mo, 14.15-16.00
ETH HG G 5
Th, 10.15-12.00
ETH CAB G 11
Serra
Dynamical Systems and Ergodic Theory (DP) (3)Mo, 08.15-10.00
Y27H28
Th, 13.00-14.45
Y27H28
Gorodnik
First Passage Percolation and Large Deviations (V) (2)Mo, 12.15-14.00
ETH HG D 1.1
Dembin
Functional Analysis II (U) ()Mo, 09.15-10.00
Mehrere Räume
Hintz
Functional Analysis II (V) (3)Mo, 10.15-12.00
ETH CAB G 51
Th, 14.15-16.00
ETH CAB G 61
Hintz
Graph Theory (U) ()Fr, 12.15-13.00
Mehrere Räume
Fr, 16.15-17.00
Mehrere Räume
Sudakov
Graph Theory (V) (2)We, 10.15-12.00
ETH HG E 5
Th, 10.15-12.00
ETH HG F 3
Sudakov
Information Theory II (G) (2)Th, 14.15-18.00
ETH ETZ E 9
Lapidoth
Introduction to Dispersive PDE (DP) (2)We, 15.00-17.00
Y27H46
Widmayer
Introduction to the statistical mechanics of lattice systems (DP) (2)Tu, 15.00-17.00
Y27H28
We, 15.00-17.00
Y27H28
Deuchert
Inverse Problems (G) (1)Mo, 14.15-16.00
ETH HG F 5
Alaifari
Likelihood inference (3)Furrer
Mathematics for New Technologies in Finance (U) ()We, 10.15-11.00
Mehrere Räume
Teichmann
Mathematics for New Technologies in Finance (V) (3)Mo, 10.15-12.00
ETH HG G 5
We, 11.15-12.00
ETH HG F 5
Teichmann
Mathematics of Information (U) ()Mo, 14.14-16.00
ETH ML E 12
Bölcskei
Mathematics of Information (V) (3)Th, 09.15-12.00
ETH ML F 36
Bölcskei
Methods in Analysis (DP) (2)Mo, 13.00-14.45
Y27H46
Th, 10.15-12.00
Y27H25
Schlein
Network & Integer Optimisation: From Theory to Application (G) (2)Mo, 12.15-14.00
ETH HG G 5
Th, 13.15-14.00
ETH HG G 5
Zenklusen
Nonlinear Dynamics and Chaos II (G) (2)Tu, 16.15-18.00
ETH ML J 34.1
We, 10.15-12.00
ETH ML J 34.3
Haller
Nonlinear Wave Equations with Applications to General Relativity (V) (1)Tu, 10.15-12.00
ETH ML J 34.1
Kehle
Numerical Methods for Finance (U) ()Fr, 13.15-14.00
ETH HG D 5.2
Fr, 15.15-16.00
ETH HG D 5.2
Schwab
Numerical Methods for Finance (V) (3)We, 14.15-16.00
ETH HG D 5.2
Fr, 14.15-15.00
ETH HG D 5.2
Schwab
Numerical Methods for Hyperbolic PDEs (DP) (3)We, 08.00-09.45
Y27H25
Th, 08.00-09.45
Y27H25
Abgrall
Partially hyperbolic dynamics and related topics III (DP) (2)Tu, 13.00-14.45
Y27H26
Avila
Probabilistic Methods in Analysis (V) (2)We, 10.15-12.00
ETH HG G 43
Mendelson
Quantitative Risk Management (U) ()Th, 12.15-13.00
ETH HG E 1.1
Cheridito
Quantitative Risk Management (V) (2)Th, 10.15-12.00
ETH ML H 44
Cheridito
Quantum Field Theory II (U) ()We, 07.45-09.30
Mehrere Räume
Quantum Field Theory II (V) (3)Mo, 11.45-13.30
ETH HCI J 7
Fr, 09.45-11.30
ETH HCI J 7
Lazopoulos
Random Walks on Transitive Graphs (V) (2)Tassion
Singular Foliations (DP) (3)Tu, 13.00-14.45
Y25H86
Th, 10.15-12.00
Y17M05
Th, 13.00-14.45
Y13M12
Androulidakis
Statistics for Mathematicians (DP) (1)Fr, 10.15-12.00
Y27H28
Bovet
Stochastic Loss Reserving Methods (V) (1)We, 16.15-18.00
ETH LFV E 41
Dahms
Survival Analysis (1)Tu, 09.00-11.00
Y23G04
Tu, 11.15-12.00
Y23G04
Hothorn
Symmetric Spaces (G) (3)We, 10.15-12.00
ETH HG G 19.1
Th, 12.15-14.00
ETH HG G 19.1
Iozzi
The Isoperimetric Inequality, the Brunn-Minkowski Theory, and the Lp Minkowski Problem (V) (2)Tu, 10.15-12.00
ETH HG G 43
Böröczky
Variational Problems and PDEs (V) (1)We, 12.15-14.00
ETH HG G 3
Figalli

Additional Courses: see semester program of ETH and UZH