Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

FS 19
Title (Credits)Time & PlaceInstructor
Algebraic Topology II (3)We, 10.15-12.00
ETH ML F 36
Fr, 13.15-15.00
ETH HG G 3
Biran
Algebraische Geometrie II (2)Mo, 10.15-12.00
Y27H28
Tu, 10.15-12.00
Y27H28
Ayoub
Calculus of Variations (3)Mo, 10.15-12.00
ETH HG G 43
We, 10.15-12.00
ETH HG G 43
Struwe
Causality (2)We, 10.15-12.00
ETH HG E 3
Codierungstheorie (9)Mo, 10.15-12.00
Y27H12
Mo, 13.00-14.45
Y27H28
Th, 10.15-12.00
Y27H12
Th, 13.00-14.45
Y23G04
Rosenthal
Combinatorial Optimization (2)Th, 16.15-18.00
ETH HG G 19.1
Th, 16.15-18.00
ETH HG D 1.2
Zenklusen
Combinatorial Optimization (U) ()Mo, 14.15-15.00
ETH HG E 1.2
Zenklusen
Computational Methods for Quantitative Finance: PDE Methods (3)We, 13.15-15.00
ETH HG D 1.2
Fr, 13.15-14.00
ETH HG D 1.2
Herrmann
Computational Methods for Quantitative Finance: PDE Methods (U) ()Fr, 14.15-15.00
ETH HG G 5
Fr, 14.15-15.00
ETH HG D 1.2
Herrmann
Conformal Field Theory (2)We, 08.15-10.00
ETH HG G 26.5
Felder
Data Analytics for Non-Life Insurance Pricing (2)Tu, 16.15-18.00
ETH HG F 5
Wüthrich
Differential Geometry II (3)Mo, 13.15-15.00
ETH HG E 1.1
Th, 10.15-12.00
ETH HG D 1.1
Merry
Differential Geometry II (U) ()Fr, 08.15-09.00
ETH HG E 1.1
Fr, 09.15-10.00
ETH HG E 1.1
Fr, 10.15-11.00
ETH HG E 1.1
Merry
Economic Theory of Financial Markets (2)Mo, 16.15-18.00
ETH HG D 7.2
Wüthrich
Empirical Process Theory with Applications in Statistics and Machine Learning (2)Th, 08.15-10.00
ETH HG E 5
Van de Geer
Entropy in Dynamics ()We, 10.15-12.00

Th, 15.15-16.00

Einsiedler
Functional Analysis II (3)Mo, 10.15-12.00
ETH HG G 5
Th, 13.15-15.00
ETH HG G 5
Einsiedler
Functional Analysis II (U) ()Mo, 09.15-10.00
ETH HG F 26.5
Mo, 09.15-10.00
ETH HG G 26.3
Mo, 09.15-10.00
ETH HG E 33.3
Einsiedler
Geometric Integer Programming (2)Th, 13.15-15.00
ETH HG G 26.3
Weismantel
Geometric Integer Programming (U) ()We, 12.15-13.00
ETH HG F 26.3
Weismantel
Global aspects of the theory of one-frequency Schrodinger operators (2)Tu, 15.00-17.00
Y27H12
Avila
Harmonic Analysis (2)Mo, 18.00-19.30
Y27H25
Tu, 08.15-10.00
Y27H46
We, 13.00-14.45
Y27H46
Gorodnik
High dimensionality and h principle in fluid dynamics (1)Mo&Tue, 10-12h, Wed, 9-13h, room Y27-H-46
De Lellis
Introduction to Knot Theory (2)Tu, 15.00-17.00
Y27H28
We, 14.00-14.45
Y27H28
Putyra
Introduction to p-adic numbers ()We, 15.00-17.00
Y27H12
David
Introduction to the Geometry of Surfaces ()We, 10.15-12.00
Y27H25
Fr, 13.00-14.45
Y27H25
Fr, 15.00-17.00
Y27H25
Ulcigrai
Mathematical Methods in Data Science (2)We, 10.15-12.00
Y27H12
Genovese
Mathematics of (Super-Resolution) Biomedical Imaging (3)Mo, 09.15-11.00
ETH HG E 22
Th, 13.15-15.00
ETH HG E 22
Ammari
Numerical Methods for Hyperbolic PDEs (3)Mo, 13.15-15.00
ETH HG F 26.5
Tu, 15.15-17.00
ETH HG E 5
Mishra
Numerical Methods for Hyperbolic PDEs (U) ()Mo, 15.15-18.00
ETH HG F 26.5
Mishra
Plane algebraic curves (3)Mo, 15.00-17.00
Y27H25
We, 08.00-09.45
Y27H25
We, 17.15-19.00
Y27H35/36
Park
Quantitative Risk Management (2)Th, 10.15-12.00

Cheridito
Quantitative Risk Management (U) ()Th, 12.15-13.00

Cheridito
Random combinatorial structures (2)Mo, 08.00-09.45
Y27H25
Fr, 10.15-12.00
Y27H25
Féray
Representation Theory of Lie Groups (3)Tu, 10.15-12.00
ETH HG E 33.1
Th, 08.15-10.00
ETH HG G 5
Nelson
Seminar: Introduction to p-adic numbers ()We, 15.00-17.00
Y27H46
David
Spectral and Dynamical Aspects of the Theory of Quasi-Periodic Schrödinger Operators (2)Tu, 10.15-12.00
ETH HG G 43
Spin Geometry (3)We, 15.00-18.00
Y27H46
Wernli
Stochastic Loss Reserving Methods (2)We, 16.15-18.00
ETH HG D 3.2
Dahms
Survival Analysis (1)Do 11-12, erste Semesterhälfte, Raum: Y23-G-04
Di 9-11, erste Semesterhälfte, Raum: Y23-G-04
Hothorn
Survival Analysis ()Hothorn
The Euler equations as a differential inclusion (1)Mo-Fr, 10-12h, room Y27-H-46
De Lellis
Topics in Partial Differential Equations (2)Fr, 10.15-12.00
ETH HG E 1.2
Figalli

Additional Courses: see semester program of ETH and UZH