Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

HS 19
Title (Credits)Time & PlaceInstructor
Advanced Algorithms (2)Tu, 10.15-12.00
ETH CAB G 61
Ghaffari
Advanced Algorithms (U) ()Fr, 10.15-12.00
ETH CAB G 59
Ghaffari
Algebraic Methods in Combinatorics (2)We, 10.15-12.00
ETH HG E 1.1
Sudakov
Algebraic Methods in Combinatorics (U) ()Mo, 15.15-16.00
ETH HG D 1.1
Sudakov
Algebraic Topology I (3)We, 10.15-12.00
ETH HG D 3.2
Fr, 13.15-15.00
ETH HG D 3.2
Sisto
An introduction to machine learning (2)Tu, 10.15-12.00
Y17M05
We, 08.00-09.45
Y27H28
Th, 15.00-17.00
Y13M12
Fr, 10.15-12.00
Y27H28
Nikeghbali
Bayesian Statistics (2)Tu, 15.15-17.00
ETH HG G 3
Sigrist
Clinical Biostatistics (3)Th, 09.00-09.45
HRS F05
Th, 10.15-12.00
HRS F05
Th, 15.00-15.45
HRS F05
Held
Combinatorics of words (2)Th, 15.00-17.00
Y27H28
Bouvel
Die Gödel'schen Sätze (2)Tu, 10.15-12.00
ETH HG D 5.2
Th, 13.15-14.00
ETH ML F 39
Halbeisen
Die Gödel'schen Sätze (U) ()Th, 14.15-15.00
ETH ML F 39
Halbeisen
Ergodic theory (3)Mo, 10.15-12.00
Y27H26
Tu, 10.15-12.00
Y27H12
Th, 10.15-12.00
Y35F47
Gorodnik
Étale cohomology (3)Mo, 10.15-12.00
Y27H28
Tu, 10.15-12.00
Y27H28
The first date of the lecture is Monday 30.09.2019
Ayoub
Field Theory with Symmetries and the Batalin-Vilkovisky Formalism (1)Mo, 15.45-17.30
ETH HIT F 12
Schiavina
Four-Manifolds (2)Tu, 13.15-15.00
ETH HG G 26.5
Smirnov
Fundamentals of Mathematical Statistics (2)Tu, 08.15-10.00
ETH HG E 5
We, 10.15-12.00
ETH HG F 3
Van de Geer
Fundamentals of Mathematical Statistics (U) ()Tu, 12.15-13.00
ETH HG E 1.1
Van de Geer
Generalized complex geometry (3)Mo, 15.00-17.00
Y27H26
We, 10.15-12.00
Y27H46
Mantovani
High-Dimensional Statistics (2)Th, 08.15-10.00
ETH HG D 7.1
Bühlmann
Image Analysis and Computer Vision (2)Th, 13.15-16.00

Van Gool
Image Analysis and Computer Vision (U) ()Th, 16.15-17.00

Van Gool
Information Theory I (3)We, 13.15-17.00

Lapidoth
Introduction to Lie Groups (3)Tu, 10.15-12.00
ETH HG D 3.2
alternating to exercises
Nelson
Introduction to Lie Groups (U) ()alternating to course
Nelson
Introduction to quantum groups (3)Tu, 13.00-14.45
Y27H46
Th, 08.00-09.45
Y27H28
Safronov
Introduction to String Theory (2)Tu, 08.45-10.30
ETH HPV G 5
Hoare
Introduction to String Theory (U) ()We, 09.45-10.30
ETH HCI J 3
Hoare
Kombinatorik II (1)We, 17.15-19.00
ETH HG G 26.5
Hungerbühler
Kryptographie (3)Mo, 10.15-12.00
Y27H25
Tu, 08.00-09.45
Y27H25
Th, 09.00-11.00
Y27H26
Th, 13.00-14.45
Y27H12
Rosenthal
Likelihood and Regression II (3)Tu, 09.00-11.00
Y27H46
Tu, 11.15-12.00
Y27H46
Hothorn
Likelihood inference (3)Furrer
Likelihood inference (3)We, 09.15-11.00
Y27H12
Mi 11-12h, Räume: Y27-H-12 & Y23-G-04
Furrer
Machine Learning of Dynamic Processes with Applications to Forecasting (2)Th, 10.15-12.00
ETH HG G 43
Mathematical and Computational Methods in Photonics (3)Mo, 10.15-12.00
ETH HG G 26.5
We, 10.15-12.00
ETH HG G 26.5
Ammari
Mathematical Finance (3)Tu, 08.15-10.00
ETH HG E 1.1
Th, 08.15-10.00
ETH ML F 39
Teichmann
Mathematical Finance (U) ()Fr, 10.15-12.00
ETH ML F 39
Teichmann
Mathematical Tools in Machine Learning (2)Th, 10.15-12.00
ETH HG E 5
Balabdaoui
Neural Network Theory (2)Mo, 09.15-11.00
ETH HG E 3
Bölcskei
Neural Network Theory (U) ()Mo, 11.15-12.00
ETH HG E 3
Bölcskei
Numerical Analysis of Stochastic Ordinary Differential Equations (2)Mo, 15.15-17.00
ETH HG D 1.2
We, 13.15-14.00
ETH HG E 1.1
Kirchner
Numerical Analysis of Stochastic Ordinary Differential Equations (U) ()We, 14.15-15.00
ETH HG D 7.1
Kirchner
Numerical Methods for Elliptic and Parabolic PDEs (3)Tu, 10.15-12.00
ETH HG E 21
Th, 08.15-10.00
ETH HG E 1.2
Schwab
Numerical Methods for Elliptic and Parabolic PDEs (U) ()We, 09.15-10.00
ETH HG E 1.2
Schwab
O-Minimality and Diophantine Applications (1)Th, 15.15-17.00
ETH HG G 26.1
Optimal Transport (2)Mo, 13.15-15.00
ETH HG D 1.1
Figalli
p-Adic Galois Representations (2)Mo, 10.15-12.00
ETH ML J 37.1
Practical Introduction to the Statistical Computing Environment R (1)Zeiten und Raum: siehe VVZ!
Hug Peter
Quantum Field Theory I (3)Mo, 13.45-15.30
ETH HPV G 5
Th, 08.45-10.30
ETH HPV G 5
Beisert
Quantum Field Theory I (U) ()Th, 14.45-16.30
ETH HCI J 7
Fr, 09.45-11.30
ETH HIT J 53
Beisert
Random Walks on Transitive Graphs (2)Tu, 10.15-12.00
ETH HG E 33.3
Tassion
Randomized Algorithms and Probabilistic Methods (2)Tu, 13.15-14.00
ETH CAB G 51
Th, 08.15-10.00
ETH CAB G 51
Steger
Randomized Algorithms and Probabilistic Methods (U) ()Tu, 16.15-18.00
ETH CAB G 51
Steger
Smoothing and Nonparametric Regression with Examples (2)Fr, 10.15-12.00
ETH HG E 21
Beran-Ghosh
Statistical Analysis of High-Throughput Genomic and Transcriptomic Data (3)Mo, 09.00-11.00
Y27H46
Monday 11:15 - 12:00, Room: Y01-F-50
Robinson
Statistical Physics (3)Tu, 12.45-14.30
ETH HPV G 5
We, 13.45-15.30
ETH HPV G 5
Graf
Statistical Physics (U) ()Tu, 14.45-16.30
ETH HIT J 53
We, 10.45-12.30
ETH HIT K 51
Fr, 14.45-16.30
ETH HIT K 51
Graf
Topics in Analytic Inequalities (1)We, 12.15-13.45
Y27H28
Rassias
Topics in Modern Analytic Number Theory (2)We, 10.15-12.00
ETH HG G 43
Topics in renormalization theory of maps (2)Tu, 15.00-17.00
Y27H28
Avila
Topics on elliptic PDEs (3)Mo, 15.00-17.00
Y27H28
We, 15.00-17.00
Y27H12
Ros-Oton
Weak Convergence Methods for Nonlinear Partial Differential Equations (2)Tu, 10.15-12.00
ETH HG G 43
Evans

Additional Courses: see semester program of ETH and UZH