Remark
The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.
The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).
Title (Credits) | Time & Place | Instructor |
Advanced Graph Algorithms and Optimization (G) (2) | We, 09.15-12.00 ETH CAB G 52
| |
Algebraic Topology II (G) (3) | We, 10.15-12.00 ETH ML E 12 Fr, 13.15-15.00 ETH HG G 3
| Sisto |
An introduction to high dimensional probability and statistics (3) | Tu, 10.15-12.00 Y27H46 Tu, 13.00-14.45 Y27H46 Fr, 10.15-12.00 Y27H28
| Nikeghbali |
Belief Propagation (2) | Tu, 15.00-17.00 Y27H12
| Bolthausen |
Brownian Motion and Stochastic Calculus (U) () | Fr, 08.15-09.00 ETH HG D 3.2 Fr, 09.15-10.00 ETH HG D 3.2 Fr, 12.15-13.00 ETH HG G 26.3
| Werner |
Brownian Motion and Stochastic Calculus (V) (2) | We, 08.15-10.00 ETH HG D 7.1 Th, 10.15-12.00 ETH HG D 7.1
| Werner |
Causality (G) (2) | We, 10.15-12.00 ETH HG E 1.1
| |
Computational Methods for Quantitative Finance: PDE Methods (U) () | Fr, 13.15-14.00 ETH HG D 5.2 Fr, 15.15-16.00 ETH HG D 5.2
| Schwab |
Computational Methods for Quantitative Finance: PDE Methods (V) (3) | We, 13.15-15.00 ETH HG D 5.2 Fr, 14.15-15.00 ETH HG D 5.2
| Schwab |
Computational Quantum Physics (U) () | Tu, 12.45-14.30
| |
Computational Quantum Physics (U) () | Tu, 12.45-14.30
| |
Computational Quantum Physics (V) (2) | Tu, 10.00-11.45
| |
Data Analytics for Non-Life Insurance Pricing (V) (1) | Tu, 16.15-18.00 ETH HG F 5
| Wüthrich |
Differential Geometry II (U) () | Fr, 09.15-10.00 ETH HG E 1.1 Fr, 10.15-11.00 ETH HG E 1.1
| Lang |
Differential Geometry II (V) (3) | Mo, 13.15-15.00 ETH HG E 1.1 Th, 10.15-12.00 ETH HG E 1.1
| Lang |
Dynamical Systems II (U) () | Fr, 12.15-13.00 ETH HG D 1.2
| Merry |
Dynamical Systems II (V) (3) | Tu, 15.15-17.00 ETH HG D 1.2 Fr, 10.15-12.00 ETH HG D 1.2
| Merry |
Elliptic Curves (3) | Mo, 08.30-10.00 Y27H28 Mo, 10.15-12.00 Y27H28 Tu, 13.00-14.45 Mehrere Räume Th, 13.00-14.45 Y27H28
| Rosenthal |
Empirical Process Theory and Applications (V) (2) | Th, 08.15-10.00 ETH HG D 1.2
| Van de Geer |
Étale cohomology II (3) | Mo, 10.15-12.00 Y27H46 Tu, 10.15-12.00 Y27H25
| Ayoub |
Functional Analysis II (U) () | Mo, 09.15-10.00 ETH HG E 33.3
| Struwe |
Functional Analysis II (V) (3) | Mo, 10.15-12.00 ETH HG G 5 Th, 13.15-15.00 ETH HG G 5
| Struwe |
Geometric Integer Programming (U) () | We, 12.15-13.00 ETH HG E 33.3
| |
Geometric Integer Programming (V) (2) | Th, 13.15-15.00 ETH HG E 33.3
| |
Geometry of Numbers (3) | Tu, 08.15-10.00 Y27H25 Th, 10.15-12.00 Y27H25 Fr, 13.00-14.45 Y27H25
| Gorodnik |
Graph Theory (U) () | Th, 15.15-16.00 ETH CAB G 52 Th, 17.15-18.00 ETH HG E 33.5
| Sudakov |
Graph Theory (V) (2) | We, 10.15-12.00 ETH HG E 5 Th, 10.15-12.00 ETH HG F 3
| Sudakov |
Introduction to 3-Manifolds (V) (1) | Fr, 11.15-13.00 ETH HG G 26.5
| |
Large Deviations (2) | Mo, 13.00-14.45 Y27H46
| Lehéricy |
Limit Shape Phenomenon in Integrable Models in Statistical Mechanics (V) (2) | Mo, 10.15-12.00 ETH HG G 43
| |
Machine Learning in Finance (U) () | We, 10.15-11.00
| Teichmann |
Machine Learning in Finance (V) (2) | Mo, 10.15-12.00 ETH ML F 36 We, 11.15-12.00
| Teichmann |
Market-Consistent Actuarial Valuation (V) (1) | Mo, 16.15-18.00 ETH HG D 1.1
| Wüthrich |
Mathematics of (Super-Resolution) Biomedical Imaging (G) (3) | Mo, 09.15-11.00 ETH HG E 22 Th, 13.15-15.00 ETH HG E 22
| Ammari |
Mathematics of Information (U) () | Mo, 13.15-15.00
| Bölcskei |
Mathematics of Information (V) (3) | Th, 09.15-12.00
| Bölcskei |
Monoids (3) | We, 13.00-14.45 Y27H12 Fr, 13.00-14.45 Y27H12
| Park |
NCCR SwissMAP - Master Class in Mathematical Physics: Minicourse "Percolation Theory" (G) (1) | | Tassion |
Nonlinear Dynamics and Chaos II (G) (2) | Tu, 16.15-18.00 ETH ML J 34.1 We, 10.15-12.00 ETH ML J 34.3
| Haller |
Nonlinear Dynamics and Chaos II (G) (2) | Tu, 16.15-18.00 ETH ML J 34.1 We, 10.15-12.00 ETH ML J 34.3
| Haller |
Numerical Methods for Hyperbolic PDEs (3) | Mo, 10.15-12.00 Y21F70 We, 08.00-09.45 Y27H12 Th, 08.00-09.45 Y27H12 Th, 10.15-12.00 Y27H26
| Öffner |
ODEs and transport equations with rough coefficients (2) | Online lecture. Dates see below.
| De Lellis |
Probabilistic Number Theory (G)) (3) | Mo, 10.15-12.00 ETH HG D 3.2 Th, 13.15-15.00 ETH HG D 3.2
| Kowalski |
Quantitative Risk Management (U) () | Th, 12.15-13.00
| Cheridito |
Quantitative Risk Management (V) (2) | Th, 10.15-12.00
| Cheridito |
Quantum Field Theory (U) () | We, 08.45-10.30 ETH HIT H 51 Fr, 08.45-10.30 ETH HCI J 3
| Isidori |
Quantum Field Theory II (V) (3) | Mo, 13.45-15.30 ETH HCI J 7 Fr, 10.45-11.30 ETH HCI J 3
| Isidori |
Renormalization dynamics and ergodic theory of interval exchange transformations (2) | Tu, 13.00-14.45 Y27H26
| Avila |
Rough Analysis and Applications (V) (2) | We, 10.15-12.00 ETH HG G 43
| |
Selected Topics in Probability (V) (2) | Fr, 10.15-12.00 ETH HG G 26.3
| Sznitman |
Smooth Supermanifolds and their Applications (2) | Fr, 15.00-17.00 Y27H12
| Cattaneo |
Stochastic Loss Reserving Methods (V) (1) | We, 16.15-18.00 ETH HG D 3.2
| Dahms |
Survival Analysis () | | |
Survival Analysis (1) | Tu, 09.00-11.00 Y23G04 Tu, 11.15-12.00 Y23G04
| |
Symmetric Spaces (G) (3) | Tu, 10.15-12.00 ETH HG F 26.5 Th, 08.15-10.00 ETH HG F 26.5
| Burger |
The mathematics of dilute quantum gases (2) | Th, 15.00-17.00 Y27H28
| Deuchert |
The Representation Theory of the Finite Symmetric Groups (V) (1) | Tu, 15.15-17.00 ETH HG E 5
| |
The Value Distribution of L-Functions and Multiplicative Number Theory (V) (2) | Th, 10.15-12.00 ETH HG G 43
| |
Topics in Symplectic Topology (V) (2) | We, 09.15-10.00 ETH HG G 26.1 Th, 13.15-15.00 ETH HG G 26.1
| Biran |
Additional Courses: see semester program of ETH and UZH