Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

FS 20
Title (Credits)Time & PlaceInstructor
Advanced Graph Algorithms and Optimization (G) (2)We, 09.15-12.00
ETH CAB G 52
Algebraic Topology II (G) (3)We, 10.15-12.00
ETH ML E 12
Fr, 13.15-15.00
ETH HG G 3
Sisto
An introduction to high dimensional probability and statistics (3)Tu, 10.15-12.00
Y27H46
Tu, 13.00-14.45
Y27H46
Fr, 10.15-12.00
Y27H28
Nikeghbali
Belief Propagation (2)Tu, 15.00-17.00
Y27H12
Bolthausen
Brownian Motion and Stochastic Calculus (U) ()Fr, 08.15-09.00
ETH HG D 3.2
Fr, 09.15-10.00
ETH HG D 3.2
Fr, 12.15-13.00
ETH HG G 26.3
Werner
Brownian Motion and Stochastic Calculus (V) (2)We, 08.15-10.00
ETH HG D 7.1
Th, 10.15-12.00
ETH HG D 7.1
Werner
Causality (G) (2)We, 10.15-12.00
ETH HG E 1.1
Computational Methods for Quantitative Finance: PDE Methods (U) ()Fr, 13.15-14.00
ETH HG D 5.2
Fr, 15.15-16.00
ETH HG D 5.2
Schwab
Computational Methods for Quantitative Finance: PDE Methods (V) (3)We, 13.15-15.00
ETH HG D 5.2
Fr, 14.15-15.00
ETH HG D 5.2
Schwab
Computational Quantum Physics (U) ()Tu, 12.45-14.30

Computational Quantum Physics (U) ()Tu, 12.45-14.30

Computational Quantum Physics (V) (2)Tu, 10.00-11.45

Data Analytics for Non-Life Insurance Pricing (V) (1)Tu, 16.15-18.00
ETH HG F 5
Wüthrich
Differential Geometry II (U) ()Fr, 09.15-10.00
ETH HG E 1.1
Fr, 10.15-11.00
ETH HG E 1.1
Lang
Differential Geometry II (V) (3)Mo, 13.15-15.00
ETH HG E 1.1
Th, 10.15-12.00
ETH HG E 1.1
Lang
Dynamical Systems II (U) ()Fr, 12.15-13.00
ETH HG D 1.2
Merry
Dynamical Systems II (V) (3)Tu, 15.15-17.00
ETH HG D 1.2
Fr, 10.15-12.00
ETH HG D 1.2
Merry
Elliptic Curves (3)Mo, 08.30-10.00
Y27H28
Mo, 10.15-12.00
Y27H28
Tu, 13.00-14.45
Mehrere Räume
Th, 13.00-14.45
Y27H28
Rosenthal
Empirical Process Theory and Applications (V) (2)Th, 08.15-10.00
ETH HG D 1.2
Van de Geer
Étale cohomology II (3)Mo, 10.15-12.00
Y27H46
Tu, 10.15-12.00
Y27H25
Ayoub
Functional Analysis II (U) ()Mo, 09.15-10.00
ETH HG E 33.3
Struwe
Functional Analysis II (V) (3)Mo, 10.15-12.00
ETH HG G 5
Th, 13.15-15.00
ETH HG G 5
Struwe
Geometric Integer Programming (U) ()We, 12.15-13.00
ETH HG E 33.3
Geometric Integer Programming (V) (2)Th, 13.15-15.00
ETH HG E 33.3
Geometry of Numbers (3)Tu, 08.15-10.00
Y27H25
Th, 10.15-12.00
Y27H25
Fr, 13.00-14.45
Y27H25
Gorodnik
Graph Theory (U) ()Th, 15.15-16.00
ETH CAB G 52
Th, 17.15-18.00
ETH HG E 33.5
Sudakov
Graph Theory (V) (2)We, 10.15-12.00
ETH HG E 5
Th, 10.15-12.00
ETH HG F 3
Sudakov
Introduction to 3-Manifolds (V) (1)Fr, 11.15-13.00
ETH HG G 26.5
Large Deviations (2)Mo, 13.00-14.45
Y27H46
Lehéricy
Limit Shape Phenomenon in Integrable Models in Statistical Mechanics (V) (2)Mo, 10.15-12.00
ETH HG G 43
Machine Learning in Finance (U) ()We, 10.15-11.00

Teichmann
Machine Learning in Finance (V) (2)Mo, 10.15-12.00
ETH ML F 36
We, 11.15-12.00

Teichmann
Market-Consistent Actuarial Valuation (V) (1)Mo, 16.15-18.00
ETH HG D 1.1
Wüthrich
Mathematics of (Super-Resolution) Biomedical Imaging (G) (3)Mo, 09.15-11.00
ETH HG E 22
Th, 13.15-15.00
ETH HG E 22
Ammari
Mathematics of Information (U) ()Mo, 13.15-15.00

Bölcskei
Mathematics of Information (V) (3)Th, 09.15-12.00

Bölcskei
Monoids (3)We, 13.00-14.45
Y27H12
Fr, 13.00-14.45
Y27H12
Park
NCCR SwissMAP - Master Class in Mathematical Physics: Minicourse "Percolation Theory" (G) (1)Tassion
Nonlinear Dynamics and Chaos II (G) (2)Tu, 16.15-18.00
ETH ML J 34.1
We, 10.15-12.00
ETH ML J 34.3
Haller
Nonlinear Dynamics and Chaos II (G) (2)Tu, 16.15-18.00
ETH ML J 34.1
We, 10.15-12.00
ETH ML J 34.3
Haller
Numerical Methods for Hyperbolic PDEs (3)Mo, 10.15-12.00
Y21F70
We, 08.00-09.45
Y27H12
Th, 08.00-09.45
Y27H12
Th, 10.15-12.00
Y27H26
Öffner
ODEs and transport equations with rough coefficients (2)Online lecture. Dates see below.
De Lellis
Probabilistic Number Theory (G)) (3)Mo, 10.15-12.00
ETH HG D 3.2
Th, 13.15-15.00
ETH HG D 3.2
Kowalski
Quantitative Risk Management (U) ()Th, 12.15-13.00

Cheridito
Quantitative Risk Management (V) (2)Th, 10.15-12.00

Cheridito
Quantum Field Theory (U) ()We, 08.45-10.30
ETH HIT H 51
Fr, 08.45-10.30
ETH HCI J 3
Isidori
Quantum Field Theory II (V) (3)Mo, 13.45-15.30
ETH HCI J 7
Fr, 10.45-11.30
ETH HCI J 3
Isidori
Renormalization dynamics and ergodic theory of interval exchange transformations (2)Tu, 13.00-14.45
Y27H26
Avila
Rough Analysis and Applications (V) (2)We, 10.15-12.00
ETH HG G 43
Selected Topics in Probability (V) (2)Fr, 10.15-12.00
ETH HG G 26.3
Sznitman
Smooth Supermanifolds and their Applications (2)Fr, 15.00-17.00
Y27H12
Cattaneo
Stochastic Loss Reserving Methods (V) (1)We, 16.15-18.00
ETH HG D 3.2
Dahms
Survival Analysis ()
Survival Analysis (1)Tu, 09.00-11.00
Y23G04
Tu, 11.15-12.00
Y23G04
Symmetric Spaces (G) (3)Tu, 10.15-12.00
ETH HG F 26.5
Th, 08.15-10.00
ETH HG F 26.5
Burger
The mathematics of dilute quantum gases (2)Th, 15.00-17.00
Y27H28
Deuchert
The Representation Theory of the Finite Symmetric Groups (V) (1)Tu, 15.15-17.00
ETH HG E 5
The Value Distribution of L-Functions and Multiplicative Number Theory (V) (2)Th, 10.15-12.00
ETH HG G 43
Topics in Symplectic Topology (V) (2)We, 09.15-10.00
ETH HG G 26.1
Th, 13.15-15.00
ETH HG G 26.1
Biran

Additional Courses: see semester program of ETH and UZH