Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

HS 23
Title (Credits)Time & PlaceInstructor
Additive Combinatorics and Applications (G) (3)Tu, 16.15-18.00
ETH HG G 3
Th, 14.15-16.00
ETH HG D 5.2
Kowalski
Algebraic Topology I (G) (3)We, 10.15-12.00
ETH HG E 1.1
Fr, 14.15-16.00
ETH HG E 1.1
Kalisnik Hintz
Analysis on Matrix Groups (2)Tu, 10.15-12.00
Y27H28
Fr, 10.15-12.00
Y27H28
Gorodnik
Bayesian Statistics (V) (2)Tu, 14.15-16.00
ETH ETF C 1
Sigrist
Causality (G) (2)Fr, 08.15-10.00
ETH HG G 3
Peters
Complex Networks Theory and Applications (1)Mo, 10.15-12.00
Y27H12
Bovet
Dynamics of Cocycles and Applications (2)Th, 14.00-15.45
Y27H12
Avila
E-Functions and Geometry (V) (2)Th, 10.15-12.00
ETH HG G 43
Fresan
Elliptic Curves (3)Mo, 13.00-14.45
Y27H28
Th, 10.15-12.00
Y27H28
Rosenthal
Elliptic Partial Differential Equations (U) ()Th, 13.15-14.00
ETH HG E 1.2
Elliptic Partial Differential Equations (V) (2)Mo, 14.15-16.00
ETH HG G 19.1
Fundamentals of Mathematical Statistics (U) ()Tu, 12.15-13.00
ETH HG D 1.1
Van de Geer
Fundamentals of Mathematical Statistics (V) (2)Tu, 08.15-10.00
ETH HG E 3
We, 10.15-12.00
ETH HG E 7
Van de Geer
Generalized Regression (3)Tu, 08.00-09.45
Y27H12
We, 08.00-09.45
Y27H12
Hothorn
High-Dimensional Statistics (V) (2)Th, 08.15-10.00
ETH CAB G 61
Bühlmann
Hodge Theory and Algebraic Cycles (3)Mo, 10.15-12.00
Y27H25
Tu, 10.15-12.00
Y27H12
Ayoub
Introduction to Geometric Measure Theory (V) (2)Tu, 09.15-10.00
ETH HG D 5.2
Th, 10.15-12.00
ETH LFW B1
Lang
Kombinatorik II (V) (1)We, 18.15-20.00
ETH HG D 3.2
Hungerbühler
Likelihood inference (3)Tu, 08.00-09.45
Y27H12
We, 08.00-09.45
Y27H12
Furrer
Machine Learning in Finance and Insurance (U) ()We, 16.15-17.00
ETH HG D 1.1
Cheridito
Machine Learning in Finance and Insurance (V) (2)Tu, 16.15-18.00
ETH HG D 7.1
Cheridito
Mathematical and Computational Methods in Photonics (G) (3)Mo, 10.15-12.00
ETH HG G 26.5
We, 10.15-12.00
ETH HG G 26.5
Ammari
Mathematical Finance (U) ()Fr, 10.15-12.00
ETH ML F38
Schweizer
Mathematical Finance (V) (3)Tu, 08.15-10.00
ETH HG E 1.1
Th, 08.15-10.00
ETH ML F 36
Schweizer
Mathematical Theory in Fluid Mechanics (V) (2)Mo, 10.15-12.00
ETH HG E 21
Mathematics of Data Science (G) (2)Th, 12.15-14.00
ETH HG G 3
Fr, 10.15-12.00
ETH HG F 3
Bandeira
Numerical Methods for Elliptic and Parabolic Partial Differential Equations (3)We, 10.15-12.00
Y27H12
Th, 08.00-09.45
Y27H12
Sauter
Numerical Solutions of Stochastic ODEs (U) ()Fr, 15.15-16.00
ETH HG D 3.2
Schwab
Numerical Solutions of Stochastic ODEs (V) (3)We, 14.15-16.00
ETH HG D 5.2
Fr, 14.15-15.00
ETH HG D 3.2
Schwab
PDE Methods in Condensed Matter Physics (V) (2)Fr, 14.15-16.00
ETH CHN F 46
Statistical Modelling (G) (2)Mo, 10.15-12.00
ETH ML D 28
Th, 14.15-16.00
ETH HG E 1.1
Symplectic Geometry (U) ()Fr, 12.15-13.00
ETH HG F 26.5
Symplectic Geometry (V) (2)Tu, 10.15-12.00
ETH HG D 1.2
Th, 08.15-10.00
ETH HG D 1.2
Thomas Fermi Theory for atoms and molecules (1)Fr, 08.00-09.45
Y27H12
Olgiati

Additional Courses: see semester program of ETH and UZH