Remark
The credits (shown in brackets) for ETH courses with the ending -DRL as for all UZH courses are relevant for all ZGSM doctoral students.
The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate (in case they don't take the course via a Foundations of D-Math module and do the examination). Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules. Booking courses via a Foundations of D-Math module gives 3 credits, regardless of the specific course.
Title (Credits) | Time & Place | Instructor |
(Random) Graphs with applications to risk management (3) | We, 10.15-12.00 Y27H25 We, 13.00-14.45 Y35F47 Fr, 10.15-12.00 Y27H25
| Nikeghbali |
A Mathematical Introduction to Machine Learning Approximation Algorithms (G) (3) | Mo, 15.15-17.00 ETH HG E 3 Tu, 17.15-18.00 ETH HG G 3
| Jentzen |
Advanced Topics in Field Theory (2) | We, 13.00-14.45 Y27H12
| Cattaneo |
Algebraic Topology II (3) | We, 10.15-12.00 ETH ML F 36 Fr, 13.15-15.00 ETH HG G 3
| Merry |
A_∞ Structures and Moduli Spaces (2) | Mo, 10.15-12.00 ETH HG G 43
| Polishchuk |
Brownian Motion and Stochastic Calculus (U) () | Fr, 08.15-09.00 ETH HG E 21 Fr, 09.15-10.00 ETH HG E 21 Fr, 11.15-12.00 ETH HG E 22 Fr, 12.15-13.00 ETH HG E 22
| Werner |
Brownian Motion and Stochastic Calculus (V) (2) | We, 08.15-10.00 ETH HG G 3 Th, 10.15-12.00 ETH HG D 7.2
| Werner |
Causality (2) | Mo, 08.15-10.00 ETH HG D 1.1
| Meinshausen |
Combinatorial Optimization (U) () | Mo, 14.15-15.00 ETH HG G 26.5
| Zenklusen |
Combinatorial Optimization (V) (2) | Th, 16.15-18.00 ETH HG G 19.1
| Zenklusen |
Combinatorics of integer partitions (2) | Tu, 13.00-14.45 Y27H12 Tu, 17.15-18.00 Y27H25
| Dousse |
Complex Singularities and Picard-Lefschetz Theory (3) | Th, 10.15-12.00 ETH HG G 26.5 Fr, 10.15-11.00 ETH HG G 5
| Biran |
Computational Methods for Quantitative Finance: PDE Methods (3) | We, 13.15-15.00 ETH HG D 1.2 Fr, 13.15-14.00 ETH HG D 1.2
| Schwab |
Computational Methods for Quantitative Finance: PDE Methods (U) () | Fr, 14.15-15.00 ETH HG D 1.2
| Schwab |
Computational Quantum Physics (U) () | Tu, 12.45-14.30 ETH HIL E 9
| |
Computational Quantum Physics (V) (2) | Tu, 10.00-11.45 ETH HIL E 9
| |
Data Analytics for Non-Life Insurance Pricing (V) (1) | Tu, 16.15-18.00 ETH HG F 5
| Wüthrich |
Dependence, Risk Bounds and Optimal Portfolios (V) (2) | Fr, 10.15-12.00 ETH HG G 43
| |
Differential Geometry II (3) | Tu, 08.15-10.00 ETH ML H 43 Th, 10.15-12.00 ETH HG D 1.1
| Salamon |
Differential Geometry II (U) () | Fr, 08.15-09.00 ETH HG E 1.1 Fr, 09.15-10.00 ETH HG E 1.1 Fr, 10.15-11.00 ETH HG E 1.1
| Salamon |
Elliptic Curves (9) | Tu, 13.00-14.45 Y35F47 Tu, 15.00-17.00 Y27H28 Th, 10.15-12.00 Y27H28 Fr, 08.00-09.45 Y27H28
| Rosenthal |
Forcing: Einführung in Unabhängigkeitsbeweise (U) () | Th, 16.15-17.00 ETH ML F 39
| Halbeisen |
Forcing: Einführung in Unabhängigkeitsbeweise (V) (2) | Mo, 13.15-15.00 ETH HG D 7.1 Th, 15.15-16.00 ETH ML F 39
| Halbeisen |
Functional Analysis II (3) | Mo, 10.15-12.00 ETH HG G 5 Th, 13.15-15.00 ETH HG G 5
| Carlotto |
Functional Analysis II (U) () | Mo, 09.15-10.00 ETH HG E 33.3
| Carlotto |
Geometric Integer Programming (U) () | We, 12.15-13.00 ETH HG F 26.3
| Weismantel |
Geometric Integer Programming (V) (2) | Th, 13.15-15.00 ETH HG G 26.3
| Weismantel |
Geometric Wave Equations (3) | Tu, 10.15-12.00 ETH HG F 26.5 Th, 10.15-12.00 ETH HG F 26.5
| Struwe |
Graph Theory (U) () | Th, 15.15-16.00 ETH CAB G 52
| Sudakov |
Graph Theory (V) (2) | We, 10.15-12.00 ETH HG E 1.1 Th, 10.15-12.00 ETH HG E 1.1
| Sudakov |
Homogeneous Dynamics II (3) | Mo, 13.15-16.00 ETH HG F 26.5
| Einsiedler |
Hopf algebras (3) | Tu, 10.15-12.00 Y27H46 We, 15.00-17.00 Y27H26 Th, 13.00-14.45 Y27H12
| Stufler |
Hyperbolic Flows (V) (2) | We, 10.15-12.00 ETH HG G 19.1
| |
Introduction to Computability and Complexity Theory (2) | Tu, 14.00-14.45 Y27H46 Tu, 15.00-17.00 Y27H46
| Bouvel |
Lie groups and Lie algebras (3) | Mo, 13.00-14.45 Y27H12 We, 15.00-17.00
Fr, 13.00-14.45 Y27H12
| Safronov |
Market-Consistent Actuarial Valuation (V) (1) | Mo, 16.15-18.00 ETH HG D 1.1
| Wüthrich |
Mathematical aspects of quantum mechanics (2) | Th, 13.00-14.45 Y27H28 Fr, 15.00-17.00 Y27H25
| Schlein |
Mathematics of (Super-Resolution) Biomedical Imaging (3) | Mo, 09.15-11.00 ETH HG E 22 Th, 13.15-15.00 ETH HG E 22
| Ammari |
Mathematics of Information (U) () | Mo, 13.15-15.00 ETH ML F 39
| Bölcskei |
Mathematics of Information (V) (3) | Th, 09.15-12.00
| Bölcskei |
Microlocal Aspects of Representation Theory (2) | We, 08.15-10.00 ETH HG G 26.5
| Nelson |
Microlocal Aspects of Representation Theory (U) () | Th, 16.15-17.00 ETH HG G 3
| Nelson |
Nonlinear Dynamics and Chaos II (G) (2) | We, 10.15-12.00 ETH HG F 26.3 Th, 16.15-18.00 ETH ML J 34.3
| Haller |
Numerical Methods for Hyperbolic PDEs (3) | Tu, 15.00-17.00 Y27H12 Tu, 17.15-19.00 Y27H12 We, 10.15-12.00 Y27H12
| Abgrall |
Percolation Theory (2) | Tu, 10.15-12.00 ETH HG F 26.3
| Tassion |
Quantitative Risk Management (V) (2) | Th, 10.15-12.00 ETH ML H 43
| Cheridito |
Quantum Field Theory II (U) () | Fr, 08.45-10.30 ETH HCI J 3
| Anastasiou |
Quantum Field Theory II (V) (3) | Mo, 13.45-15.30 ETH HCI J 7 Fr, 10.45-11.30 ETH HCI J 3
| Anastasiou |
Regularity theory for area minimizing currents (2) | Mo, 10.15-12.00 Y27H46
| De Lellis |
Representations of General Linear Groups over p-Adic Fields (V) (1) | We, 15.15-17.00 ETH HG G 5
| |
Selected Topics in Probability (2) | Fr, 10.15-12.00 ETH HG G 26.3
| Sznitman |
Stochastic Loss Reserving Methods (V) (1) | We, 16.15-18.00 ETH ML E 12
| Dahms |
Survival Analysis () | | Hothorn |
Survival Analysis (1) | Tu, 09.00-11.00 Y13L11/13 Tu, 11.15-12.00
Tu, 11.15-12.00 Y13L11/13
| Hothorn |
Symmetric Spaces (3) | Tu, 10.15-12.00 ETH HG D 5.2 Th, 08.15-10.00 ETH HG G 5
| Iozzi |
The conservativity conjecture for realisations of Chow motives (3) | Tu, 13.15-17.00 Y27H25
| Ayoub |
Additional Courses: see semester program of ETH and UZH