Remark

The credits (shown in brackets) for ETH courses with the ending -DRL as for all UZH courses are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate (in case they don't take the course via a Foundations of D-Math module and do the examination). Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules. Booking courses via a Foundations of D-Math module gives 3 credits, regardless of the specific course.

 

 

FS 18
Title (Credits)Time & PlaceInstructor
(Random) Graphs with applications to risk management (3)We, 10.15-12.00
Y27H25
We, 13.00-14.45
Y35F47
Fr, 10.15-12.00
Y27H25
Nikeghbali
A Mathematical Introduction to Machine Learning Approximation Algorithms (G) (3)Mo, 15.15-17.00
ETH HG E 3
Tu, 17.15-18.00
ETH HG G 3
Jentzen
Advanced Topics in Field Theory (2)We, 13.00-14.45
Y27H12
Cattaneo
Algebraic Topology II (3)We, 10.15-12.00
ETH ML F 36
Fr, 13.15-15.00
ETH HG G 3
Merry
A_∞ Structures and Moduli Spaces (2)Mo, 10.15-12.00
ETH HG G 43
Polishchuk
Brownian Motion and Stochastic Calculus (U) ()Fr, 08.15-09.00
ETH HG E 21
Fr, 09.15-10.00
ETH HG E 21
Fr, 11.15-12.00
ETH HG E 22
Fr, 12.15-13.00
ETH HG E 22
Werner
Brownian Motion and Stochastic Calculus (V) (2)We, 08.15-10.00
ETH HG G 3
Th, 10.15-12.00
ETH HG D 7.2
Werner
Causality (2)Mo, 08.15-10.00
ETH HG D 1.1
Meinshausen
Combinatorial Optimization (U) ()Mo, 14.15-15.00
ETH HG G 26.5
Zenklusen
Combinatorial Optimization (V) (2)Th, 16.15-18.00
ETH HG G 19.1
Zenklusen
Combinatorics of integer partitions (2)Tu, 13.00-14.45
Y27H12
Tu, 17.15-18.00
Y27H25
Dousse
Complex Singularities and Picard-Lefschetz Theory (3)Th, 10.15-12.00
ETH HG G 26.5
Fr, 10.15-11.00
ETH HG G 5
Biran
Computational Methods for Quantitative Finance: PDE Methods (3)We, 13.15-15.00
ETH HG D 1.2
Fr, 13.15-14.00
ETH HG D 1.2
Schwab
Computational Methods for Quantitative Finance: PDE Methods (U) ()Fr, 14.15-15.00
ETH HG D 1.2
Schwab
Computational Quantum Physics (U) ()Tu, 12.45-14.30
ETH HIL E 9
Computational Quantum Physics (V) (2)Tu, 10.00-11.45
ETH HIL E 9
Data Analytics for Non-Life Insurance Pricing (V) (1)Tu, 16.15-18.00
ETH HG F 5
Wüthrich
Dependence, Risk Bounds and Optimal Portfolios (V) (2)Fr, 10.15-12.00
ETH HG G 43
Differential Geometry II (3)Tu, 08.15-10.00
ETH ML H 43
Th, 10.15-12.00
ETH HG D 1.1
Salamon
Differential Geometry II (U) ()Fr, 08.15-09.00
ETH HG E 1.1
Fr, 09.15-10.00
ETH HG E 1.1
Fr, 10.15-11.00
ETH HG E 1.1
Salamon
Elliptic Curves (9)Tu, 13.00-14.45
Y35F47
Tu, 15.00-17.00
Y27H28
Th, 10.15-12.00
Y27H28
Fr, 08.00-09.45
Y27H28
Rosenthal
Forcing: Einführung in Unabhängigkeitsbeweise (U) ()Th, 16.15-17.00
ETH ML F 39
Halbeisen
Forcing: Einführung in Unabhängigkeitsbeweise (V) (2)Mo, 13.15-15.00
ETH HG D 7.1
Th, 15.15-16.00
ETH ML F 39
Halbeisen
Functional Analysis II (3)Mo, 10.15-12.00
ETH HG G 5
Th, 13.15-15.00
ETH HG G 5
Carlotto
Functional Analysis II (U) ()Mo, 09.15-10.00
ETH HG E 33.3
Carlotto
Geometric Integer Programming (U) ()We, 12.15-13.00
ETH HG F 26.3
Weismantel
Geometric Integer Programming (V) (2)Th, 13.15-15.00
ETH HG G 26.3
Weismantel
Geometric Wave Equations (3)Tu, 10.15-12.00
ETH HG F 26.5
Th, 10.15-12.00
ETH HG F 26.5
Struwe
Graph Theory (U) ()Th, 15.15-16.00
ETH CAB G 52
Sudakov
Graph Theory (V) (2)We, 10.15-12.00
ETH HG E 1.1
Th, 10.15-12.00
ETH HG E 1.1
Sudakov
Homogeneous Dynamics II (3)Mo, 13.15-16.00
ETH HG F 26.5
Einsiedler
Hopf algebras (3)Tu, 10.15-12.00
Y27H46
We, 15.00-17.00
Y27H26
Th, 13.00-14.45
Y27H12
Stufler
Hyperbolic Flows (V) (2)We, 10.15-12.00
ETH HG G 19.1
Introduction to Computability and Complexity Theory (2)Tu, 14.00-14.45
Y27H46
Tu, 15.00-17.00
Y27H46
Bouvel
Lie groups and Lie algebras (3)Mo, 13.00-14.45
Y27H12
We, 15.00-17.00

Fr, 13.00-14.45
Y27H12
Safronov
Market-Consistent Actuarial Valuation (V) (1)Mo, 16.15-18.00
ETH HG D 1.1
Wüthrich
Mathematical aspects of quantum mechanics (2)Th, 13.00-14.45
Y27H28
Fr, 15.00-17.00
Y27H25
Schlein
Mathematics of (Super-Resolution) Biomedical Imaging (3)Mo, 09.15-11.00
ETH HG E 22
Th, 13.15-15.00
ETH HG E 22
Ammari
Mathematics of Information (U) ()Mo, 13.15-15.00
ETH ML F 39
Bölcskei
Mathematics of Information (V) (3)Th, 09.15-12.00

Bölcskei
Microlocal Aspects of Representation Theory (2)We, 08.15-10.00
ETH HG G 26.5
Nelson
Microlocal Aspects of Representation Theory (U) ()Th, 16.15-17.00
ETH HG G 3
Nelson
Nonlinear Dynamics and Chaos II (G) (2)We, 10.15-12.00
ETH HG F 26.3
Th, 16.15-18.00
ETH ML J 34.3
Haller
Numerical Methods for Hyperbolic PDEs (3)Tu, 15.00-17.00
Y27H12
Tu, 17.15-19.00
Y27H12
We, 10.15-12.00
Y27H12
Abgrall
Percolation Theory (2)Tu, 10.15-12.00
ETH HG F 26.3
Tassion
Quantitative Risk Management (V) (2)Th, 10.15-12.00
ETH ML H 43
Cheridito
Quantum Field Theory II (U) ()Fr, 08.45-10.30
ETH HCI J 3
Anastasiou
Quantum Field Theory II (V) (3)Mo, 13.45-15.30
ETH HCI J 7
Fr, 10.45-11.30
ETH HCI J 3
Anastasiou
Regularity theory for area minimizing currents (2)Mo, 10.15-12.00
Y27H46
De Lellis
Representations of General Linear Groups over p-Adic Fields (V) (1)We, 15.15-17.00
ETH HG G 5
Selected Topics in Probability (2)Fr, 10.15-12.00
ETH HG G 26.3
Sznitman
Stochastic Loss Reserving Methods (V) (1)We, 16.15-18.00
ETH ML E 12
Dahms
Survival Analysis ()Hothorn
Survival Analysis (1)Tu, 09.00-11.00
Y13L11/13
Tu, 11.15-12.00

Tu, 11.15-12.00
Y13L11/13
Hothorn
Symmetric Spaces (3)Tu, 10.15-12.00
ETH HG D 5.2
Th, 08.15-10.00
ETH HG G 5
Iozzi
The conservativity conjecture for realisations of Chow motives (3)Tu, 13.15-17.00
Y27H25
Ayoub

Additional Courses: see semester program of ETH and UZH