Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

FS 21
Title (Credits)Time & PlaceInstructor
Differential Geometry II (V) (3)Mo, 14.15-16.00
ETH HG D 1.1
Th, 10.15-12.00

Merry
Advanced Graph Algorithms and Optimization (U) ()Th, 15.15-16.00
ETH ML F38
Kyng
Advanced Graph Algorithms and Optimization (V) (3)Mo, 10.15-11.00
ETH ML F38
Tu, 16.15-18.00
ETH ML F38
Kyng
Algebraic Topology II (G) (3)We, 10.15-12.00
ETH ML E 12
Fr, 14.15-16.00
ETH HG G 3
Biran
Algebraische Geometrie II (2)Mo, 10.15-12.00
Y27H28
Tu, 10.15-12.00
Y27H28
by arrangement
Kresch
An Introduction to the Calculus of Variations (V) (1)Mo, 16.15-18.00
ETH HG F 5
Figalli
Brownian Motion and Stochastic Calculus (U) ()Fr, 08.15-09.00
ETH HG G 26.5
Werner
Brownian Motion and Stochastic Calculus (V) (2)We, 08.15-10.00
ETH HG E 5
Th, 10.00-12.00
ETH ETF C 1
Werner
Causality (G) (2)We, 10.15-12.00
ETH HG E 1.1
Heinze-Deml
Cluster Algebras and Cluster Categories via Surfaces (V) (2)We, 10.15-12.00
Online
Baur
Computational Methods for Quantitative Finance: PDE Methods (U) ()Fr, 13.15-14.00
ETH HG D 5.2
Fr, 16.15-17.00
ETH HG D 5.2
Marcati
Computational Methods for Quantitative Finance: PDE Methods (V) (3)We, 14.15-16.00
ETH HG D 5.2
Fr, 14.15-15.00
ETH HG D 5.2
Marcati
Computational Quantum Physics (U) ()Tu, 14.00-16.00
ETH HCI J 7
Fischer
Computational Quantum Physics (V) (2)Tu, 10.00-12.00
ETH HIL E 7
Fischer
Data Analytics for Non-Life Insurance Pricing (V) (1)Tu, 16.15-18.00
ETH HG E 1.2
Wüthrich
Differential Geometry II (U) ()Fr, 09.15-10.00
ETH HG E 1.1
Fr, 10.15-11.00
ETH HG E 1.1
Merry
Economic Theory of Financial Markets (V) (1)Mo, 16.15-18.00
ETH HG E 1.1
Wüthrich
Elements of Spectral Theory (1)We, 10.15-12.00

Berk
Elliptic Curves (3)Mo, 08.30-10.00
Y27H12
Mo, 10.15-12.00
Y27H12
Tu, 13.00-14.45

Th, 13.00-14.45
Y27H12
Rosenthal
Empirical Process Theory and Applications (V) (2)Tu, 08.15-10.00
Online
Van de Geer
Functional Analysis II (U) ()Mo, 09.15-10.00
ETH HG F 26.5
Mo, 09.15-10.00
ETH HG G 26.5
Mo, 09.15-10.00
ETH HG E 33.3
Carlotto
Functional Analysis II (V) (3)Mo, 10.15-12.00
ETH HG G 5
Th, 14.15-16.00
ETH HG G 5
Carlotto
Graph Theory (U) ()Th, 16.15-17.00
ETH CAB G 56
Th, 16.15-17.00
ETH HG E 33.5
Th, 16.15-17.00
ETH CAB G 52
Th, 17.15-18.00
ETH HG E 33.5
Sudakov
Graph Theory (V) (2)We, 10.15-12.00
ETH HG E 5
Th, 10.15-12.00
ETH HG F 3
Sudakov
Groups Acting on Trees (G) (2)Tu, 08.15-10.00
ETH HG F 26.5
Th, 12.15-14.00

Brück
Information Theory II (G) (2)Th, 14.00-18.00
ETH ETZ E 9
Lapidoth
Lectures on Drinfeld Modules (V) (2)Tu, 16.15-18.00

We, 14.15-16.00
Online
Pink
Machine Learning in Finance (U) ()We, 10.15-11.00
ETH LFW C 5
Teichmann
Machine Learning in Finance (V) (2)Mo, 10.15-12.00
ETH ML F 36
We, 11.15-12.00
ETH LFW C 5
Teichmann
Mathematical Aspects of Classical and Quantum Field Theory (V) (3)Tu, 12.15-14.00
ETH HG E 1.1
We, 12.15-14.00
ETH HG E 1.1
Schiavina
Mathematical Statistical Mechanics (2)Th, 15.15-17.00

Deuchert
Mathematics of Information (U) ()Mo, 14.16-16.00
ETH ML E 12
Bölcskei
Mathematics of Information (V) (3)Th, 09.15-12.00
ETH ML E 12
Bölcskei
Network & Integer Optimization: From Theory to Application (G) (2)Mo, 12.15-14.00
ETH HG E 1.1
Th, 13.15-14.00
ETH HG E 1.1
Zenklusen
Nonlinear Dynamics and Chaos II (G) (2)Tu, 16.15-18.00
ETH ML J 34.1
We, 10.15-12.00
ETH ML J 34.3
Haller
Nonlocal Inverse Problems (V) (2)Mo, 10.00-12.00
ETH CHN F 46
Railo
Numerical Methods for Hyperbolic PDEs (U) ()Ruf
Numerical Methods for Hyperbolic PDEs (V) (3)Mo, 14.15-16.00
ETH HG E 1.1
Tu, 16.15-18.00
ETH HG E 5
Ruf
Polynomial Optimization (G) (2)We, 16.15-18.00
ETH HG F 5
Fr, 13.15-14.00
ETH HG E 1.2
Kurpisz
Prescribing Scalar Curvature in Conformal Geometry (V) (2)Tu, 10.15-12.00
Online
Malchioldi
Probabilistic Number Theory (G) (2)Mo, 10.15-12.00
ETH ML F 39
Th, 14.15-16.00
ETH HG D 5.2
Kowalski
Quantitative Risk Management (U) ()Th, 12.15-13.00

Cheridito
Quantitative Risk Management (V) (2)Th, 10.15-12.00

Cheridito
Quantum Field Theory II (U) ()We, 08.00-10.00
ETH HIT H 51
Fr, 08.00-10.00
ETH HIT H 51
Beisert
Quantum Field Theory II (V) (3)Mo, 14.00-16.00
ETH HCI J 7
Fr, 10.00-12.00
ETH HCI J 7
Beisert
Random Graphs (V) (2)We, 14.15-16.00
Online
Krivelevich
Renormalization dynamics and ergodic theory of interval exchange transformations II (2)Tu, 13.00-14.45

Avila
Rough Path Theory (V) (2)Tu, 14.15-16.00
ETH HG E 1.2
Allan
Stochastic Loss Reserving Methods (V) (1)We, 16.15-18.00

Dahms
Survival Analysis (1)Hothorn
Symmetric Spaces (G) (3)We, 08.15-10.00
ETH HG F 26.5
Th, 08.15-10.00
ETH HG F 26.5
Iozzi
Time-Frequency Analysis (V) (1)Th, 12.15-14.00
ETH HG F 26.5
Alaifari

Additional Courses: see semester program of ETH and UZH