Remark
The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.
The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).
Title (Credits) | Time & Place | Instructor |
Algebraic Topology II (G) (3) | We, 10.15-12.00 ETH ML E 12 Fr, 14.15-16.00 ETH HG G 3
| Biran |
An introduction to high dimensional probability and statistics (3) | We, 15.00-17.00 Y27H28 Fr, 10.15-12.00 Y27H35/36
| Nikeghbali |
Bayesian Non-Linear Inverse Problems: Statistical and Computational Guarantees (V) (2) | We, 10.15-12.00 ETH HG G 19.1
| Nickl |
Billiards & Surfaces Dynamics (3) | Tu, 10.15-12.00 Y27H12 Fr, 10.15-12.00 Y27H25
| Ulcigrai |
Brownian Motion and Stochastic Calculus (U) () | Fr, 08.15-09.00 ETH HG G 26.5 Fr, 09.15-10.00 ETH HG G 26.5 Fr, 12.15-13.00 ETH HG G 26.3
| Schweizer |
Brownian Motion and Stochastic Calculus (V) (2) | Tu, 08.15-10.00 ETH HG E 3 Th, 08.15-10.00 ETH HG E 3
| Schweizer |
Computational Methods for Quantitative Finance: PDE Methods (U) () | Fr, 13.15-14.00 ETH HG D 5.2 Fr, 16.15-17.00 ETH HG D 3.2
| Schwab |
Computational Methods for Quantitative Finance: PDE Methods (V) (3) | We, 14.15-16.00 ETH HG D 5.2 Fr, 14.15-15.00 ETH HG D 5.2
| Schwab |
Convolutional Codes (1) | Tu, 08.00-09.45 Y27H28
| Lieb |
Data Analytics for Non-Life Insurance Pricing (V) (1) | Tu, 16.15-18.00 ETH HG E 1.2
| Wüthrich |
Deep Learning in Scientific Computing (U) () | Tu, 13.15-14.00 ETH HG E 5
| Mishra |
Deep Learning in Scientific Computing (V) (1) | Fr, 12.15-14.00 ETH HG D 1.1
| Mishra |
Derived Algebraic Geometry (V) (2) | Tu, 16.15-18.00 ETH CAB G 52
| Bojko |
Differential Geometry II (U) () | Fr, 09.15-10.00 ETH HG E 1.1 Fr, 10.15-11.00 ETH HG E 1.1
| Serra |
Differential Geometry II (V) (3) | Mo, 14.15-16.00 ETH HG D 7.1 Th, 10.15-12.00 ETH CAB G 11
| Serra |
Dynamics on Homogeneous Spaces and New Applications to Number Theory (V) (2) | We, 13.15-15.00 ETH HG G 19.1
| Kleinbock |
Empirical Process Theory and Applications (V) (2) | We, 08.15-10.00 ETH HG D 5.2
| Van de Geer |
Functional Analysis II (U) () | Mo, 09.15-10.00 Diverse
| Burger |
Functional Analysis II (V) (3) | Mo, 10.15-12.00 ETH CAB G 51 Th, 14.15-16.00 ETH CAB G 61
| Burger |
Geometric Methods in Mathematical Physics (V) (1) | Mo, 16.15-18.00 ETH ML H 44
| Schiavina |
Graph Theory (U) () | Th, 16.15-17.00 Diverse Th, 17.15-18.00 ETH HG E 33.5
| Sudakov |
Graph Theory (V) (3) | We, 10.15-12.00 ETH HG E 5 Th, 10.15-12.00 ETH HG F 3
| Sudakov |
Intersection Theory in Algebraic Geometry (V) (2) | Th, 16.15-18.00 ETH HG G 26.5
| Bousseau |
Kryptographie (3) | Mo, 10.15-12.00 Y27H25 Th, 13.00-14.45 Y27H25
| Rosenthal |
Machine Learning in Finance (U) () | We, 10.15-11.00 Diverse
| Teichmann |
Machine Learning in Finance (V) (2) | Mo, 10.15-12.00 ETH HG G 5 We, 11.15-12.00 ETH HG G 3
| Teichmann |
Market-Consistent Actuarial Valuation (V) (1) | Mo, 16.15-18.00 ETH HG D 3.2
| Wüthrich |
Modular Forms (G) (3) | Tu, 10.15-12.00 ETH HG G 3 Fr, 10.15-11.00 ETH HG G 3
| Zerbes |
Moduli of Stable Bundles on Curves (V) (2) | Tu, 14.15-16.00 ETH HG E 21
| Lim |
Network & Integer Optimization: From Theory to Application (G) (2) | Mo, 12.15-14.00 ETH HG E 1.1 Th, 13.15-14.00 ETH HG E 1.1
| Zenklusen |
New and Classical Perspectives on Hydrodynamic Stability (V) (2) | We, 10.15-12.00 ETH HG G 43
| Bedrossian |
Numerical Methods for Hyperbolic PDEs (U) () | Mo, 16.15-17.00 ETH HG F 3
| Lanthaler |
Numerical Methods for Hyperbolic PDEs (V) (3) | Mo, 14.15-16.00 ETH HG E 1.1 Tu, 16.00-18.00 ETH NO C 60
| Lanthaler |
Partially hyperbolic dynamics and related topics (2) | Tu, 13.00-14.45 Y27H26
| Avila |
Quantitative Risk Management (U) () | Th, 12.15-13.00 ETH HG E 1.1
| Cheridito |
Quantitative Risk Management (V) (2) | Th, 10.15-12.00 ETH ML H 44
| Cheridito |
Random planar maps and the peeling process (2) | Th, 10.15-12.00 Y27H52
| Riera |
Stochastic Loss Reserving Methods (V) (1) | We, 16.00-18.00 ETH LFV E 41
| Dahms |
Survival Analysis (1) | Tu, 09.00-11.00 Y23G04
| Hothorn |
Symmetric Spaces (G) (3) | We, 08.15-10.00 Diverse Th, 12.15-14.00 Diverse
| Iozzi |
Topics in number theory: L-Functions and modular forms (3) | Tu, 15.00-17.00 Y27H28 Th, 15.00-17.00 Y27H28
| Burrin |
Unitary Representations of Lie Groups (G) (2) | Tu, 12.15-14.00 ETH HG E 1.1 We, 10.15-12.00 ETH HG E 1.1
| Einsiedler |
Variational Methods in Analysis (3) | Tu, 15.00-17.00 Y27H46 Th, 15.00-17.00 Y27H25
| Deuchert |
Additional Courses: see semester program of ETH and UZH