Remark

The credits (shown in brackets) for ETH courses with the ending -DRL are relevant for all ZGSM doctoral students.

The credits for ETH courses without -DRL ending are only for doctoral students of D-Math doing their doctorate on base of the new ordinance on the doctorate. Doctoral students of I-Math or of D-Math on base of the old ordinance have to book these courses via the foundation modules (with -DRL ending).

 

 

FS 22
Title (Credits)Time & PlaceInstructor
Algebraic Topology II (G) (3)We, 10.15-12.00
ETH ML E 12
Fr, 14.15-16.00
ETH HG G 3
Biran
An introduction to high dimensional probability and statistics (3)We, 15.00-17.00
Y27H28
Fr, 10.15-12.00
Y27H35/36
Nikeghbali
Bayesian Non-Linear Inverse Problems: Statistical and Computational Guarantees (V) (2)We, 10.15-12.00
ETH HG G 19.1
Nickl
Billiards & Surfaces Dynamics (3)Tu, 10.15-12.00
Y27H12
Fr, 10.15-12.00
Y27H25
Ulcigrai
Brownian Motion and Stochastic Calculus (U) ()Fr, 08.15-09.00
ETH HG G 26.5
Fr, 09.15-10.00
ETH HG G 26.5
Fr, 12.15-13.00
ETH HG G 26.3
Schweizer
Brownian Motion and Stochastic Calculus (V) (2)Tu, 08.15-10.00
ETH HG E 3
Th, 08.15-10.00
ETH HG E 3
Schweizer
Computational Methods for Quantitative Finance: PDE Methods (U) ()Fr, 13.15-14.00
ETH HG D 5.2
Fr, 16.15-17.00
ETH HG D 3.2
Schwab
Computational Methods for Quantitative Finance: PDE Methods (V) (3)We, 14.15-16.00
ETH HG D 5.2
Fr, 14.15-15.00
ETH HG D 5.2
Schwab
Convolutional Codes (1)Tu, 08.00-09.45
Y27H28
Lieb
Data Analytics for Non-Life Insurance Pricing (V) (1)Tu, 16.15-18.00
ETH HG E 1.2
Wüthrich
Deep Learning in Scientific Computing (U) ()Tu, 13.15-14.00
ETH HG E 5
Mishra
Deep Learning in Scientific Computing (V) (1)Fr, 12.15-14.00
ETH HG D 1.1
Mishra
Derived Algebraic Geometry (V) (2)Tu, 16.15-18.00
ETH CAB G 52
Bojko
Differential Geometry II (U) ()Fr, 09.15-10.00
ETH HG E 1.1
Fr, 10.15-11.00
ETH HG E 1.1
Serra
Differential Geometry II (V) (3)Mo, 14.15-16.00
ETH HG D 7.1
Th, 10.15-12.00
ETH CAB G 11
Serra
Dynamics on Homogeneous Spaces and New Applications to Number Theory (V) (2)We, 13.15-15.00
ETH HG G 19.1
Kleinbock
Empirical Process Theory and Applications (V) (2)We, 08.15-10.00
ETH HG D 5.2
Van de Geer
Functional Analysis II (U) ()Mo, 09.15-10.00
Diverse
Burger
Functional Analysis II (V) (3)Mo, 10.15-12.00
ETH CAB G 51
Th, 14.15-16.00
ETH CAB G 61
Burger
Geometric Methods in Mathematical Physics (V) (1)Mo, 16.15-18.00
ETH ML H 44
Schiavina
Graph Theory (U) ()Th, 16.15-17.00
Diverse
Th, 17.15-18.00
ETH HG E 33.5
Sudakov
Graph Theory (V) (3)We, 10.15-12.00
ETH HG E 5
Th, 10.15-12.00
ETH HG F 3
Sudakov
Intersection Theory in Algebraic Geometry (V) (2)Th, 16.15-18.00
ETH HG G 26.5
Bousseau
Kryptographie (3)Mo, 10.15-12.00
Y27H25
Th, 13.00-14.45
Y27H25
Rosenthal
Machine Learning in Finance (U) ()We, 10.15-11.00
Diverse
Teichmann
Machine Learning in Finance (V) (2)Mo, 10.15-12.00
ETH HG G 5
We, 11.15-12.00
ETH HG G 3
Teichmann
Market-Consistent Actuarial Valuation (V) (1)Mo, 16.15-18.00
ETH HG D 3.2
Wüthrich
Modular Forms (G) (3)Tu, 10.15-12.00
ETH HG G 3
Fr, 10.15-11.00
ETH HG G 3
Zerbes
Moduli of Stable Bundles on Curves (V) (2)Tu, 14.15-16.00
ETH HG E 21
Lim
Network & Integer Optimization: From Theory to Application (G) (2)Mo, 12.15-14.00
ETH HG E 1.1
Th, 13.15-14.00
ETH HG E 1.1
Zenklusen
New and Classical Perspectives on Hydrodynamic Stability (V) (2)We, 10.15-12.00
ETH HG G 43
Bedrossian
Numerical Methods for Hyperbolic PDEs (U) ()Mo, 16.15-17.00
ETH HG F 3
Lanthaler
Numerical Methods for Hyperbolic PDEs (V) (3)Mo, 14.15-16.00
ETH HG E 1.1
Tu, 16.00-18.00
ETH NO C 60
Lanthaler
Partially hyperbolic dynamics and related topics (2)Tu, 13.00-14.45
Y27H26
Avila
Quantitative Risk Management (U) ()Th, 12.15-13.00
ETH HG E 1.1
Cheridito
Quantitative Risk Management (V) (2)Th, 10.15-12.00
ETH ML H 44
Cheridito
Random planar maps and the peeling process (2)Th, 10.15-12.00
Y27H52
Riera
Stochastic Loss Reserving Methods (V) (1)We, 16.00-18.00
ETH LFV E 41
Dahms
Survival Analysis (1)Tu, 09.00-11.00
Y23G04
Hothorn
Symmetric Spaces (G) (3)We, 08.15-10.00
Diverse
Th, 12.15-14.00
Diverse
Iozzi
Topics in number theory: L-Functions and modular forms (3)Tu, 15.00-17.00
Y27H28
Th, 15.00-17.00
Y27H28
Burrin
Unitary Representations of Lie Groups (G) (2)Tu, 12.15-14.00
ETH HG E 1.1
We, 10.15-12.00
ETH HG E 1.1
Einsiedler
Variational Methods in Analysis (3)Tu, 15.00-17.00
Y27H46
Th, 15.00-17.00
Y27H25
Deuchert

Additional Courses: see semester program of ETH and UZH